ASME V&V 20-2009

Standard for

Verification and Validation
in Computational Fluid
Dynamics and Heat Transfer

AN AMERICAN NATIONAL STANDARD

% The American Society of

® Mechanical Engineers




ASME V&V 20-2009

Standard for

Verification and Validation
in Computational Fluid
Dynamics and Heat Transfer

AN AMERICAN NATIONAL STANDARD

% The American Society of

® Mechanical Engineers

tttttttttttttttttttttttttt
Licensee=Us Nuclear Regulatory Commission/9979306001
ooooooooooooooooooooooooooooooooooooooooooooooooooooooooo



Date of Issuance: November 30, 2009

This Standard will be revised when the Society approves the issuance of a new edition. There will be no addenda
issued to this edition.

ASME issues written replies to inquiries concerning interpretations of technical aspects of this Standard. Periodically
certain actions of the ASME V&V 20 Committee may be published as Cases. Cases and interpretations are published
on the ASME Web site under the Committee Pages at http:/ /cstools.asme.org as they are issued.

ASME is the registered trademark of The American Society of Mechanical Engineers.

This code or standard was developed under procedures accredited as meeting the criteria for American National Standards. The Standards
Committee that approved the code or standard was balanced to assure that individuals from competent and concerned interests have had an
opportunity to participate. The proposed code or standard was made available for public review and comment that provides an opportunity
for additional public input from industry, academia, regulatory agencies, and the public-at-large.

ASME does not approve, rate, or endorse any item, construction, proprietary device, or activity.

ASME does not take any position with respect to the validity of any patent rights asserted in connection with any items mentioned in this
document, and does not undertake to insure anyone utilizing a standard against liability for infringement of any applicable letters patent,
nor assumes any such liability. Users of a code or standard are expressly advised that determination of the validity of any such patent rights,
aﬁd the risk of infringement of such rights, is entirely their own responsibility.

 Participation by federal agency representative(s) or person(s) affiliated with industry is not to be interpreted as government or industry
endorsement of this code or standard.

“ASME accepts responsibility for only those interpretations of this document issued in accordance with the established ASME procedures
and policies, which precludes the issuance of interpretations by individuals.

No part of this document may be reproduced in any form,
in an electronic retrieval system or otherwise,
without the prior written permission of the publisher.

The American Society of Mechanical Engineers
Three Park Avenue, New York, NY 10016-5990

Copyright © 2009 by
THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS
All rights reserved
Printed in U.S.A.

Copyright ASME International
Provided by IHS under license with ASME Licensee=Us Nuclear Regulatory Commission/9979306001
No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



CONTENTS

FOreword . . . ..o vi
Committee ROSEET . . ..ottt e e e e e viii
Correspondence With the V&V 20 Committee ........ ... ... ix
Section1 Introduction to Validation Methodology . .......... ... e 1
1-1 General . ..o 1
1-2 Objective and SCOPe ... ... 1
1-3 Errors and Uncertainties . .......... ... 1
1-4 Example for Validation Nomenclature and Approach .................. ... ... ... ... ......... 2
1-5 Validation Approach . ... 3
1-6 Overview of Subsequent SECtIONS .. ........... .ttt 5
1-7 REfEIENCES . . oottt e 5
Section 2 Code Verification and Solution Verification.......... ... .. ... . i il 7
L 2-1 General . ... 7
222 INtrodUction . . . ... o 7
~2-3 Code Verification . . . ..ottt e e e e e 7
24 SolUtion VErification ... ... ..............iiitt et 1
@ 2-5 Special Considerations .......... ... ... . 16
126 FInal COMMENT .. ...ttt ettt ettt e e e e e e e e e e 17
227 REfEIENCES . . oo 17
" Section3  Effect of Input Parameter Uncertainty on Simulation Uncertainty . ..............ccvvnireinennnn... 19
3-1 INErOdUCHION . ..o e e 19
3-2 Sensitivity Coefficient (Local) Method for Parameter Uncertainty Propagation .................... 19
3-3 Sampling (Global) Methods for Parameter Uncertainty Propagation ............................. 23
3-4 Importance Factors ............ . 25
3-5 Special Considerations .......... ... .. 25
3-6 Final Comment on Parameter Uncertainty ............. ... ... i i i 26
3-7 References . ... ... 26
Section 4  Uncertainty of an ExperimentalResult ......... ...ttt 27
4-1 OVeIVIEW L. 27
4-2 Experimental Uncertainty Analysis ......... ... ... i 27
4-3 Uncertainty of Validation Experiment ........... ... ... . . . 28
4-4 SUMIMATIY ..ottt 28
4-5 RefErenCes . .. o 28
Section5 Evaluation of Validation Uncertainty .......... ... o i i i 30
5-1 OVEIVIEW . oottt e e e e e 30
5-2 Estimating u_, When the Experimental Value, D, of the Validation Variable
is Directly Measured (Case 1). ......... i 30
5-3 Estimating u_, When the Experimental Value, D, of the Validation Variable is Determined
From a Data Reduction Equation (Cases2and 3) .............. ... . . .. 31
5-4 Estimating u , When the Experimental Value, D, of the Validation Variable is
Determined From a Data Reduction Equation That Itself Is a Model (Case 4)..................... 36
5-5 Assumptions and Issues ........... ... 37
5-6 REfEIEICES . . . vttt e 39
Section 6 Interpretation of Validation Results ......... ... ..ottt iiiieneennnnns 40
6-1 INErOdUCHION . ..ottt e 40
6-2 Interpretation of Validation Results Using E and u , With No Assumptions Made About
Error Distributions. . . . ..o e 40

Copyright ASME International
Provided by IHS under license with ASME

iii

Licensee=Us Nuclear Regulatory Commission/9979306001

No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



6-3
6-4

Section 7
7-1
7-2
7-3
7-4

Figures
1-4-1
1-5-1
1-5-2
2-4-1
3-2-1
3-2-2
3-3-1
3-3-2

5-1-1
5-2-1
5-2-2

5-3-1

5-3-2

5-3-3

5-3-4

5-4-1
5-4-2

7-2-1
7-2-2
7-2-3
7-3-1
7-3-2
7-3-3
7-3-4
7-3-5
7-3-6
7-3-7

7-3-8

Copyright ASME International

Interpretation of Validation Results Using E and u , With Assumptions Made About

Error Distributions. ... ... .. 40
References .. ...... ... 41
L 1 1151 U= 42
OVRIVIEW . .o 42
Code Verification Example. .......... 42
Validation Example ... ... 48
References .. ... 65
Schematic of Finned-Tube Assembly for Heat Transfer Example ..................... ... ... ... ... 2
Schematic Showing Nomenclature for Validation Approach ................... ... ... ... ..., 3
Overview of the Validation Process With Sources of ErrorinOvals................................ 4
Sample Uncertainty Analysis: Explosive Detonation in a Fluid Filled Box ......................... 15
Relative Error in Finite Difference Computation of kdT/ ok Using a Backwards Difference ........... 21
Estimated Uncertainty in Model Temperature Due to Uncertainty in g, k,and pc,................... 22
Representative Probability Distribution Function for Thermal Conductivity ....................... 23
Standard Deviation in Temperature at z/L = 0 and 1 for Constant Heat Flux Example

Using 10 LHS Runs and Mean Value Method (With u, /X =0.05)......... ... ... ... ... ... .. 25
Schematic for Combustion Gas Flow Through a Duct With Wall Heat Flux Being the

Validation Variable (Case 4) . . . ..ottt e e e e e e e 30
Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation

Variable (T)) Is Directly Measured (Case 1) ......... ... 32
Monte Carlo Approach for Estimating 1, When the Validation Variable (T)) Is

Directly Measured (Case 1) . ... 32

Sensitivity Coefficient Propagation Approach for Estimating u , When the Validation
Variable Is Defined by a Data Reduction Equation That Combines Variables Measured

in the Experiment (Case 2) ... ... ...t 34
Monte Carlo Approach for Estimating u,,, When the Validation Variable Is Defined by a
Data Reduction Equation That Combines Variables Measured in the Experiment (Case2) ......... 34

Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation

Variable Is Defined by a Data Reduction Equation That Combines Variables Measured

in the Experiment and Two Measured Variables Share an Identical Error Source (Case 3).......... 35
Monte Carlo Propagation Approach for Estimating u,,, When the Validation Variable

Is Defined by a Data Reduction Equation That Combines Variables Measured in the

Experiment and Two Measured Variables Share an Identical Error Source (Case 3) ............... 36
Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation

Variable Is Defined by a Data Reduction Equation That Itself Is a Model (Case 4)................. 37

Monte Carlo Propagation Approach for Estimating u,,, When the Validation Variable

val

Is Defined by a Data Reduction Equation That Itself Is a Model (Case4) ........................ 38
Problem Domain With (x, y) Coordinates Shown for Domain Corners ............................ 42
Finite Element Meshes Used in the Code Verification Refinement Study........................... 44
Error as a Function of Characteristic Mesh Size . ...... ... . i i 47
Schematic of Fin-Tube Heat Exchanger Assembly .......... ... ... .. ... .. ... ... ... .. ... .... 48
Experimental Total Heat Transfer Rate and Its Standard Uncertainty, u_........................... 51
Heat Transfer Model for the Fin-Tube Assembly ........... .. ... .. ... ... ... .. ... ... 52
Mesh Refinement Study for Solution Verification ............. ... ... ... ... .. ... 55
Simulation Values of Total Heat Transfer Rate and Its Uncertainty, L R R 57
LHS Samples of Simulated and Experimental Values of Total Heat Transfer Rate . .................. 60
Interval for 6, (E = 2u ) Assuming a Gaussian Distribution for the

Errors and 95% Probability. . .......... . 61
Interval for 6, (E * 2u ) Assuming a Gaussian Distribution for the Errors and 95%

Probability for the Model With Contact Conductance at the Fin/Tube Interface .................. 65

iv

Provided by IHS under license with ASME Licensee=Us Nuclear Regulatory Commission/9979306001
No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



Tables

2-4-1 Sample Uncertainty Analysis: Backward FacingStep .................. ... ... ... ... .. ... ...,
2-4-2 Sample Uncertainty Analysis: Explosive Detonation. .................. ... ... ... ... .. ... ....
3-3-1 Matrix Representation of Number of LHS Samples (7, ,,,) and Number of Parameters (np) ...........
3-3-2 LHS Samples for the Three Parameters q, k,and C........ ... ... i
7-2-1 Parameter Values Used for the Code Verification Example ........................ ... ... .....
7-2-2 Code Verification Results . ....... ... .
7-2-3 Error (E,) in the Code Simulation During Mesh Refinement ............ ... ... ... ... ... .....
7-2-4 Observed Order of Convergence (p*) From Mesh Refinement . ..................................
7-3-1 Details of the Fin-Tube Assembly and Flow Conditions................ ... ... ... ... .. ... ....
7-3-2 Measured Flow Conditions and Calculated Total Heat Transfer Rate. . ............................
7-3-3 Estimates of the Experimental Measurement Standard Uncertainties .............................
7-3-4 Sensitivity Coefficients for Average Conditions ........... ... .. ... . i
7-3-5 Experimental Values of Total Heat Transfer Rate and Its Standard Uncertainties. ...................
7-3-6 Simulation Model Input Parameters and Standard Uncertainties.................................
7-3-7 Simulation Values of Total Heat Transfer Rate ............. ... ... . ... ... ... ... ... .. ... ...,
7-3-8 Solution Verification Results for Total Heat Transfer Rate ................ .. ... . ... ... ... ....
7-3-9 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer Rate...........
7-3-10 Partial Derivatives of the Total Heat Transfer Rate for the Simulation Model With

Respect to Uncertain Model Inputs for the Average of Measured Experimental Conditions and

Standard Uncertainty forthe Inputs. ......... ... ... .
7-3-11 Simulation Values of Total Heat Transfer Rate and Its Standard Uncertainty

From Input Parameter Uncertainty. ......... .. ... ...
7-3-12 Parameters Included in Evaluating u_, Parameter Standard Uncertainty Estimates,

and Parameter Sensitivity Coefficients ............. ... ... .
7-3-13 Experimental and Simulation Values of Total Heat Transfer Rate and Associated

Standard Uncertainties . .......... ...
7-3-14 Parameter Standard Uncertainty and Example Latin Hypercube Samples . ........................
7-3-15 LHS Samples for the Simulated and Experimental Values of the Total Heat Transfer Rate............
7-3-16 Comparison of Nominal Values and Standard Uncertainties Computed With the

Propagation and LHS Approaches . ......... ... .. . .
7-3-17 Simulation Values of the Total Heat Transfer Rate for the Model With Contact Conductance .........
7-3-18 Simulation Values of the Total Heat Transfer Rate and the Standard Uncertainty for

the Model With Contact Conductance ............... ... .. i
7-3-19 Solution Verification Results for Total Heat Transfer Rate for the Model With

Contact Conductance . ...... ... ...
7-3-20 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer

Rate for the Model With Contact Conductance. .............. ... ... ... . i i
7-3-21 Partial Derivatives of the Total Heat Transfer Rate for the Simulation Model With

Respect to Uncertainty Model Inputs for Model With Contact Conductance for the

Average Measured Conditions .......... ... ...
7-3-22 Parameters Included in Evaluating u , Parameter Standard Uncertainty Estimates, and

Parameter Sensitivity Coefficients for the Model With Contact Conductance.....................
7-3-23 Experimental and Simulation Values of Total Heat Transfer Rate and Associated Uncertainties. . . . ...
Mandatory Appendices
I Detailed Development of Simulation Equations for Example Problem ............................
I Nomenclature . ........ ...
Nonmandatory Appendices
A Method of Manufactured Solutions for the Sample Problem .....................................
B Importance Factors . ......... ...
C Additional TOPICS. . . .ot

Copyright ASME International

Provided by IHS under license with ASME

Licensee=Us Nuclear Regulatory Commission/9979306001

No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



FOREWORD

This Standard addresses verification and validation (V&V) in computational fluid dynamics (CFD) and compu-
tational heat transfer (CHT). The concern of V&V is to assess the accuracy of a computational simulation. The V&V
procedures presented in this Standard can be applied to engineering and scientific modeling problems ranging in
complexity from simple lumped masses, to 1-D steady laminar flows, to 3-D unsteady turbulent chemically reacting
flows. In V&V, the ultimate goal of engineering and scientific interest is validation, which is defined as the process
of determining the degree to which a model is an accurate representation of the real world from the perspective of
the intended uses of the model. However, validation must be preceded by code verification and solution verification.
Code verification establishes that the code accurately solves the mathematical model incorporated in the code, i.e. that
the code is free of mistakes for the simulations of interest. Solution verification estimates the numerical accuracy of a
particular calculation.

The estimation of a range within which the simulation modeling error lies is a primary objective of the validation
process and is accomplished by comparing a simulation result (solution) with an appropriate experimental result
(data) for specified validation variables at a specified set of conditions. There can be no validation without experimental
data with which to compare the result of the simulation.” Usually a validation effort will cover a range of conditions within
a domain of interest.

Both the American Institute of Aeronautics and Astronautics (AIAA) and the American Society of Mechanical
Engineers (ASME) have published V&V Guides that present the philosophy and procedures for establishing a com-
prehensive validation program, but both use definitions of error and uncertainty that are not demonstrated within the
guides to provide quantitative evaluations of the comparison of the validation variables predicted by simulation and
determined by experiment. ASME V&V 10-2006, for instance, defines error as “a recognizable deficiency in any phase
or activity of modeling or experimentation that is not due to lack of knowledge” and defines uncertainty as “a potential
deficiency in any phase or activity of the modeling, computation, or experimentation process that is due to inherent
variability or lack of knowledge.”

In contrast, this Standard presents a V&V approach that is based on the concepts and definitions of error and
uncertainty that have been internationally codified by the experimental community over several decades. In 1993,
the Guide to the Expression of Uncertainty in Measurement was published by the International Organization for
Standardization (ISO) in its name and those of six other international organizations.” According to the Foreword in
the ISO Guide, “In 1977, recognizing the lack of international consensus on the expression of uncertainty in measure-
ment, the world’s highest authority in metrology, the Comite International des Poids et Mesures (CIPM), requested the
Bureau International des Poids et Mesures (BIPM) to address the problem in conjunction with the national standards
laboratories and to make a recommendation.” After several years of effort, this led to the assignment of responsibility
to the ISO Technical Advisory Group on Metrology, Working Group 3, to develop a guidance document. This ulti-
mately culminated in the publication of the ISO Guide, which has been accepted as the de facto international standard
for the expression of uncertainty in measurement.

The V&V approach presented in this Standard applies these concepts to the errors and uncertainties in the experi-
mental result and also to the errors and uncertainties in the result from the simulation. Thus, the uncertainties in the ex-
perimental value and in the simulation value are treated using the same process. Using the approach of the ISO Guide,
for each error source (other than the simulation modeling error) a standard uncertainty, u, is estimated such that u is
the standard deviation of the parent population of possible errors from which the current error is a single realization.
This allows estimation of a range within which the simulation modeling error lies.

The objective of this Standard is the specification of a verification and validation approach that quantifies the degree
of accuracy inferred from the comparison of solution and data for a specified variable at a specified validation point.
The scope of this Standard is the quantification of the degree of accuracy for cases in which the conditions of the actual
experiment are simulated. Consideration of the accuracy of simulation results at points within a domain other than
the validation points (e.g., interpolation/extrapolation in a domain of validation) is a matter of engineering judgment
specific to each family of problems and is beyond the scope of this Standard.

*This is implicit in the phrase “real world” used in the definition of validation.

fBureau International des Poids et Mesures (BIPM), International Electrotechnical Commission (IEC), International Federation of Clinical
Chemistry (IFCC), International Union of Pure and Applied Chemistry (IUPAC), International Union of Pure and Applied Physics (IUPAP),
and International Organization of Legal Metrology (OIML)
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ASME PTC 19.1-2005 “Test Uncertainty” is considered a companion document to this Standard, and it is assumed
the user has both so many of the details of estimating the uncertainty in an experimental result are not repeated herein.
ASME PTC 19.1-2005 illustrates the application of the ISO Guide methodology in straightforward and also in complex
experiments.

Ideally, as a V&V program is initiated, those responsible for the simulations and those responsible for the experiments should be
involved cooperatively in designing the V&V effort. The validation variables should be chosen and defined with care. Each
measured variable has an inherent temporal and spatial resolution, and the experimental result that is determined
from these measured variables should be compared with a predicted result that possesses the same spatial and tem-
poral resolution. If this is not done, such conceptual errors must be identified and corrected or estimated in the initial
stages of a V&V effort, or substantial resources can be wasted and the entire effort may be compromised.

Finally, as an aid to the reader of this Standard, the following guide to the topics and discussions of each section are
presented. It is recommended that the reader proceed through the Standard beginning in Section 1 and successively
read each subsequent section. The presentation in this Standard follows a procedure starting with verification (code
and solution), proceeding to parameter uncertainty assessment, experimental uncertainty assessment, simulation vali-
dation, and concluding with a comprehensive example problem. As stated, this Standard follows an overall procedure;
however, each section of this Standard may also be viewed as a standalone presentation on each of the relevant topics.
The intent of this document is validation in which uncertainty is determined for both the experimental data and the
simulation of the experiment. However, the material in Sections 2, 3, and 4 can be studied independently of the remain-
der of the document as they are important in their own right. A reader’s guide follows:

Section 1 presents an introduction to the concepts of verification and validation, the definitions of error and uncer-
tainty, and the introduction of the overall validation methodology and approach as defined in this Standard. The key
concepts of this Section are the validation comparison error and the validation standard uncertainty. It is shown that
validation standard uncertainty is a function of three standard uncertainties associated with errors due to numerical
solution of the equations, due to simulation inputs, and due to experimental data.

Section 2 presents two key topics:

(a) the details of a method for code verification based on the technique of the method of manufactured solutions

(b) the details of a method for solution verification based on the technique of the Grid Convergence Index (an exten-
sion of Richardson Extrapolation).

The outcome of Section 2 is a method for estimating the standard uncertainty associated with numerical errors.

Section 3 presents two different approaches for estimating the standard uncertainty associated with errors in simu-
lation input parameters. One approach evaluates response of the simulation or system in a local neighborhood of the
input vector, while the other approach evaluates response in a larger global neighborhood. The first approach is com-
monly referred to, for example, as the sensitivity coefficient method, and the second approach is generally referred to
as the sampling or Monte Carlo method.

Section 4 presents a brief overview of the method presented in the ASME PTC 19.1-2005 Test Uncertainty standard
for estimating uncertainty in an experimental result. At the conclusion of this Section, the reader will have methods for
estimating the key uncertainties required to complete a validation assessment.

Section 5 presents two approaches for estimating the validation standard uncertainty given the estimates of uncer-
tainty associated with numerical, input, and experimental data errors as developed in the three previous sections. At
the conclusion of this Section, the reader will have the necessary tools to estimate validation standard uncertainty and
the error associated with the mathematical model.

Section 6 presents a discussion of the interpretation of the key validation metrics of validation comparison error and
validation uncertainty. It is shown that the validation comparison error is an estimate of the mathematical model error
and that the validation uncertainty is the standard uncertainty of the estimate of the model error.

Section 7 summarizes the methods presented in the previous sections by implementing them in a comprehensive
example problem working through each element of the overall procedure and results in a complete validation assess-
ment of a candidate mathematical model.

Finally, several appendices are included in this Standard. Some are considered as part of the Standard and are iden-
tified as mandatory appendices. Other included appendices are considered as nonmandatory or supplementary and
are identified as such.

ASME V&V 20-2009 was approved by the V&V 20 (previously PTC 61) Committee on January 9, 2009 and approved
by the American National Standards Institute (ANSI) on June 3, 2009.
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General. ASME Codes are developed and maintained with the intent to represent the consensus of concerned interests.
As such, users of this Code may interact with the Committee by requesting interpretations, proposing revisions, and
attending Committee meetings. Correspondence should be addressed to

Secretary, V&V 20 Committee

The American Society of Mechanical Engineers
Three Park Avenue

New York, NY 10016-5990

Proposing Revisions. Revisions are made periodically to the Code to incorporate changes that appear necessary or
desirable, as demonstrated by the experience gained from the application of the Code. Approved revisions will be
published periodically. The Committee welcomes proposals for revisions to this Code. Such proposals should be as
specific as possible, citing the paragraph number(s), the proposed wording, and a detailed description of the reasons
for the proposal, including any pertinent documentation.

Proposing a Case. Cases may be issued for the purpose of providing alternative rules when justified, to permit early
implementation of an approved revision when the need is urgent, or to provide rules not covered by existing provi-
sions. Cases are effective immediately upon ASME approval and shall be posted on the ASME Committee Web page.

Requests for Cases shall provide a Statement of Need and Background Information. The request should identify the
Code, the paragraph, figure or table number(s), and be written as a Question and Reply in the same format as exist-
ing Cases. Requests for Cases should also indicate the applicable edition(s) of the Code to which the proposed Case
applies.

Interpretations. Upon request, the V&V 20 Committee will render an interpretation of any requirement of the Code.
Interpretations can only be rendered in response to a written request sent to the Secretary of the V&V 20 Committee.
The request for interpretation should be clear and unambiguous. It is further recommended that the inquirer submit
his/her request in the following format:

Subject: Cite the applicable paragraph number(s) and the topic of the inquiry.
Edition: Cite the applicable edition of the Code for which the interpretation is being requested.
Question: Phrase the question as a request for an interpretation of a specific requirement suitable for general

understanding and use, not as a request for an approval of a proprietary design or situation. The
inquirer may also include any plans or drawings that are necessary to explain the question; however,
they should not contain proprietary names or information.

Requests that are not in this format will be rewritten in this format by the Committee prior to being answered, which
may inadvertently change the intent of the original request.

ASME procedures provide for reconsideration of any interpretation when or if additional information that might
affect an interpretation is available. Further, persons aggrieved by an interpretation may appeal to the cognizant ASME
Committee or Subcommittee. ASME does not approve, certify, rate, or endorse any item, construction, proprietary
device, or activity.

Attending Committee Meetings. The V&V 20 Committee regularly holds meetings, which are open to the public.
Persons wishing to attend any meeting should contact the Secretary of the V&V 20 Committee.
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ASME V&V 20-2009

STANDARD FOR VERIFICATION AND VALIDATION IN
COMPUTATIONAL FLUID DYNAMICS AND HEAT TRANSFER

Section 1
Introduction to Validation Methodology

1-1 GENERAL

This Standard addresses verification and validation
(V&V) in computational fluid dynamics (CFD) and com-
putational heat transfer (CHT). The concern of V&V is
to assess the accuracy of a computational simulation.
The V&V procedures presented in this Standard can be
applied to engineering and scientific modeling prob-
lems ranging in complexity from simple lumped masses
to 1-D steady laminar flows to 3-D unsteady turbulent
chemically reacting flows. In V&V, the ultimate goal of
engineering and scientific interest is validation, which
is defined as the process of determining the degree to
which a model is an accurate representation of the real
world from the perspective of the intended uses of the
model. However, validation must be preceded by code
verification and solution verification. Code verification
establishes that the code accurately solves the mathemat-
ical model incorporated in the code (i.e., that the code is
free of mistakes for the simulations of interest). Solution
verification estimates the numerical accuracy of a partic-
ular calculation. Both code and solution verification are
discussed in detail in Section 2.

The estimation of a range within which the simulation
modeling error lies is a primary objective of the valida-
tion process and is accomplished by comparing a simula-
tion result (solution) with an appropriate experimental
result (data) for specified validation variables at a speci-
fied set of conditions. There can be no validation without
experimental data with which to compare the result of the sim-
ulation.! Usually a validation effort will cover a range of
conditions within a domain of interest.

1-2 OBJECTIVE AND SCOPE

The objective of this Standard is the specification of
a verification and validation approach that quantifies

! This is implicit in the phrase “real world” used in the definition
of validation.

the degree of accuracy inferred from the comparison of
solution and data for a specified variable at a specified
validation point. The approach, proposed by Coleman
and Stern [1], uses the concepts from experimental un-
certainty analysis [2-4] to consider the errors and uncer-
tainties in both the solution and the data.

The scope of this Standard is the quantification of the
degree of accuracy of simulation of specified validation
variables at a specified validation point for cases in which
the conditions of the actual experiment are simulated.
Consideration of solution accuracy at points within a
domain other than the validation points (e.g., interpola-
tion/extrapolation in a domain of validation) is a matter
of engineering judgment specific to each family of prob-
lems and is beyond the scope of this Standard.

Fluid dynamics and heat transfer are the areas of engi-
neering and science that are specifically addressed, but
the validation approach discussed is applicable in other
areas as well. Discussion and examples are centered on
models using partial differential equations, but simpler
models also fall within the purview of the validation
approach.

1-3 ERRORS AND UNCERTAINTIES

Pertinent definitions from metrology are as follows:

(a) error (of measurement), &: “result of a measurement
minus a true value of the measurand” [5]

(b) uncertainty (of measurement), u: “parameter, associ-
ated with the result of a measurement, that characterizes
the dispersion of the values that could reasonably be
attributed to the measurand” [5]

These concepts were extended in reference [1] to apply
to the value of a solution variable from a simulation as
well as a measured value of the variable from an experi-
ment.

In that context, then, an error, §, is a quantity that has
a particular sign and magnitude, and a specific error,
8, is the difference caused by error source i between a
quantity (measured or simulated) and its true value. In
the approach outlined in this Standard, it is assumed
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Fig. 1-4-1 Schematic of Finned-Tube Assembly for Heat Transfer Example
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that each error whose sign and magnitude is known has
been removed by correction. Any remaining error is thus
of unknown sign and magnitude,” and an uncertainty
u is estimated with the idea that *u characterizes the
range containing 8. In experimental uncertainty analy-
sis [2], u is the standard uncertainty and corresponds con-
ceptually to an estimate of the standard deviation, o, of
the parent distribution from which & is a single realiza-
tion. It is significant to note that no assumption about
the form of the parent distribution is associated with the
definition of u.

The concepts of verification and validation used in this
Standard are consistent with the definitions used in pre-
viously published guides and texts on V&V [6-8]. The
concepts and definitions for error and uncertainty used
herein differ from those in the previously published
guides, however. Both the American Institute of Aero-
nautics and Astronautics (AIAA) and the American
Society of Mechanical Engineers (ASME) have pub-
lished V&V Guides [6, 7] that present the philosophy
and procedures for establishing a comprehensive vali-
dation program, but both use definitions of error and
uncertainty that are not demonstrated within the guides

*There are asymmetric errors that are more likely to (or are cer-
tain to) have one sign rather than the other. Treatment of these by
either “zero-centering” or by estimating asymmetric uncertainties
is discussed in references [3] and [4].

to provide quantitative evaluations of the comparison
of the validation variables predicted by simulation and
determined by experiment. ASME V&V 10-2006, for
instance, defines error as “a recognizable deficiency
in any phase or activity of modeling or experimenta-
tion that is not due to lack of knowledge” and defines
uncertainty as “a potential deficiency in any phase or
activity of the modeling, computation, or experimenta-
tion process that is due to inherent variability or lack
of knowledge.”

1-4 EXAMPLE FOR VALIDATION NOMENCLATURE
AND APPROACH

In the validation process, a simulation result (solution)
is compared with an experimental result (data) for speci-
fied validation variables at a specified set of conditions
(validation point). As an example (shown schematically
in Fig. 1-4-1), consider the case of fully developed flow of
a hot fluid inside a round tube. Square fins are attached to
the outside tube wall to enhance the heat transfer. Valida-
tion variables of interest are the downstream bulk fluid
temperature, T, and the rate of heat loss, g, over the tube
length, L. A description of the problem, the correspond-
ing simulation model, and nomenclature are presented
in detail in Mandatory Appendix I.

This example is discussed in the context of validation
in Section 5 for cases in which the following occur.
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Fig. 1-5-1
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1-4.1 Case 1
The validation variable, T, is directly measured.

1-4.2 Case 2

The validation variable, g, is determined using a data
reduction equation that combines multiple variables
from the experiment as

q=pQC,T, —T)

and T,and T are separately measured and have no shared
‘error sources.
'1-4.3 Case 3
© The validation is the same as Case 2 in para. 1-4.2
“above, except the T, and T, measurements have shared
“error sources.

- The validation set point is at the Reynolds number de-
fined as

(1-4-1)

_ 4pQ

Re =7 7 (1-4-2)
Consider Case 1 in para. 1-4.1 above as an example to
describe the validation approach nomenclature. In the
experiment, the validation variable, T, is directly mea-
sured. In the simulation, the experimentally determined
valuesof T, T, Q, dl , d,, L and the reference quantities p,
w, C,h,h, hf, h, kf, k, w, and w, s are inputs to the model
and the value of T is predicted. The specific validation

point Re is calculated from eq. (1-4-2).

1-5 VALIDATION APPROACH

The nomenclature used in the validation approach
presented in this Standard is shown in Fig. 1-5-1 using

the heat transfer example discussed in the preceding
paragraph.

Denote the predicted value of T from the simulation
solution as S, the value determined from experimen-
tal data as D, and the true (but unknown) value as T.
(Obviously, the relative magnitudes of S, D, and T will
differ among cases and will not necessarily be in the
order shown in the figure.) The validation comparison
error? E is defined as

E=S-D (1-5-1)

The error in the solution value, S, is the difference be-
tween S and the true value T

5,=5-T (1-5-2)

and similarly the error in the experimental value D is

5,=D-T (1-5-3)

Using egs. (1-5-1) through (1-5-3), E can be expressed as
E=S-D=(T+4)=(T+5)=6—6, (1-54)

The validation comparison error E is thus the combi-
nation of all of the errors in the simulation result and
the experimental result, and its sign and magnitude are
known once the validation comparison is made.

NOTE: The “truth” is the value of a quantity of interest
defined by the observer and is an abstraction. However, in-
complete definition of the quantity gives rise to an additional

*Equation (1-5-1) actually defines E as a discrepancy rather than
an error at this point in the development, but E is shown to be an
error by eq. (1-5-6).
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uncertainty [2]. In this Standard, the experiment “as run” is
defined as the reality of interest (truth), and thus the condi-
tions of the actual experiment are the “validation point” that
is simulated.

All errors in S can be assigned to one of three catego-
ries [1]:

(a) the error §__, , due to modeling assumptions and
approximations

(b) the error §_ _ due to the numerical solution of the
equations

(c) the error ‘O‘input in the simulation result due to errors
in the simulation input parameters (T, T , Q, d,, d,, L,
p i, C,h,h, hf, h, kf, k, w, and w, " in the heat transfer
example)

These &’s will be defined further in later sections.
Thus

5.=8

S model + 6num + 9, (1-5-5)

input

The objective of a validation exercise is to estimate
19 to within an uncertainty range.

model
The comparison error can then be written as

E=5_ . +68  +8_ —38,

input

(1-5-6)

model
This approach is shown schematically in Fig. 1-5-2,
where the sources of error are shown in the ovals.
Rearranging eq. (1-5-6) to isolate §___  gives
8 odel = E = (8 T8,

num input - 6D )

model

(1-5-7)

model

Consider the terms on the right hand side of the equation.
Once S and D are determined, the sign and magnitude

of E are known from eq. (1-5-1). However, the signs and
magnitudes of 6, Sinput’ and &, are unknown. The stan-
dard uncertainties corresponding to these errorsare u__,
Uypour and u, (where u,, for instance, is the estimate of the
standard deviation of the parent distribution from which

d,,is a single realization).

NOTE: Once D and S have been determined, their values
always differ by the same fixed amount from the true value.
That is, all errors affecting D and S have become “fossilized”
[4]and 5, Sinput’ 8 .. andéd_ areall systematic errors. This
means that the uncertainties to be estimated (uinput’ u_ ., and
up) are systematic standard uncertainties. In the conceptual
approach of the ISO Guide [2], there is no distinction made
in the mathematical treatment of uncertainties that are
“random” and those that are “systematic.” A systematic
error is a single realization from some parent population of
possible values from a systematic error source, and the corre-
sponding systematic standard uncertainty, u, is the estimate

of the standard deviation, o, of that parent population.

Following reference [1], a wvalidation standard umncer-
tainty, u_, can be defined as an estimate of the standard
deviation of the parent population of the combination of
errors (6 + &, — &,). Considering the relationship

input

shown in eq. (1-5-7),

(E+u (1-5-8)

val)

then characterizes an interval within which §__, , falls,
or

)

model

elE—u_,E+u

val’/ val]

(1-5-9)

Fig. 1-5-2 Overview of the Validation Process With Sources of Error in Ovals

Reality of Interest (Truth): Experiment “As Run”

Experimental
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Modeling Omodel

assumptions

Y

Simulation
model
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(properties, etc.)

Numerical solutions
of equations

A

Comparison error:
E=S-D
validation uncertainty,

Y

Experimental data, D Simulation result, S

A
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The estimation of u_ is thus at the core of the methodology
presented in this Standard and E and u_ are the validation
metrics.

If the three errors on the RHS of eq. (1-5-7) are effectively
independent, then

2
u = + up

val

Ul + 1 (1-5-10)

input

As will be discussed in detail in Section 5, when the
validation variable is directly measured — as is T, in the
Case 1 (para. 1-4.1) example — the assumption of effec-
tively independent errors is generally reasonable. How-
ever, when the validation variable is determined using a
data reduction equation —as is g in Cases 2 and 3 (paras.
1-4.2 and 1-4.3) — the experimental g, and predicted g,
values can be functions of shared variables and 6, and
8, are not independent. The equivalent to eq. ( 5p 10) is
shown for these cases in Section 5.

If, as demonstrated in the basic methodology in this
Standard, uncertainty contributions to u  are considered
that take into account all of the error sourcesiné__, Smput,
and 6, then§__,  includes only errors arising from mod-
eling assumptlons and approximations (“model form”
errors). In practice, there are numerous gradations that
can exist in the choices of which error sources are ac-
counted for in 8, and which error sources are defined
as an inherent part of §__, .

The code used will often have more adjustable para-
meters or data inputs than the analyst may decide
to use (e.g., for a commercial code). The decision of
which parameters to include in the definition of the
computational simulation (conceptually separate from
the code) is somewhat arbitrary. Some (even all*) of the
parameters available may be considered fixed for the
simulation. For example, an analyst may decide to treat
parameters in a chemistry package as fixed (“hard-
wired”) and therefore not to be considered in estimat-
ing u, . even though these parameters could have
been accessed and had associated uncertainties. The
point here is that the computational simulation that
is being assessed consists of the code and a selected
number of simulation inputs that are considered part
of the simulation, while other simulation inputs have
uncertainties that are accounted forinu, _ and thus do
not contribute to§__, . See Nonmandatory Appendix C
for related discussion of specific and general senses of
model, and parametric uncertainties vs. model form un-
certainties.

It is crucial in interpreting the results of a validation effort
that those error sources that are included in & ., and those
that are accounted for in the estimation of u_ be defined pre-
cisely and unambiguously.

*If all parameter values are considered fixed in the model, this
is the limit of what has been termed a strong-model approach. See
Roache [8] for further discussion, history, and implications to the
philosophy of scientific validation.

1-6 OVERVIEW OF SUBSEQUENT SECTIONS

Considering the relationship shown in eq. (1-5-10), an
estimate of #  must be made to obtain an estimate of u_;
estimates must be made of the standard uncertainties in all
input parameters that contribute to u,  and of the stan-
dard uncertainties in the experiment that contribute to u,,.

Code verification and solution verification processes,
discussed in Section 2, result in estimation of u__. Code
verification is the process of determining that a code is
mathematically correct for the simulations of interest (i.e.,
it can converge to a correct continuum solution as the
discretization is refined). Code verification involves error
evaluation from a known benchmark solution. Solution
verification is the process of estimating numerical uncer-
tainty for a particular solution of a problem of interest.
Solution verification involves error estimation rather than
evaluation from a known benchmark solution.

Techniques for estimation of (o the standard uncer-
tainty in the solution S due to the standard uncertainties
in the simulation input parameters, are presented in Sec-
tion 3. Obviously, estimates of the standard uncertainties
of all of the input parameters are required. Then u,_ is
determined from propagation by either of the following:

(a) using a sensitivity coefficient (local) method that
requires estimates of simulation solution sensitivity
coefficients

(b) using a Monte Carlo (sampling, global) method
that makes direct use of the input parameter standard
uncertainties as standard deviations in assumed parent
population error distributions

The standard uncertainty in the experimental result u,,
is determined using well-accepted techniques [2—4, 9] de-
veloped by the international community over a period of
decades and is discussed in Section 4 of this document. The
estimate u,) is the standard uncertainty appropriate for D.
It includes all effects of averaging, includes all random and
systematic uncertainty components, and includes effects of
any correlated experimental errors and any other factors
that influence D and u,. As explained previously, when D
and u,, are used in the validation comparison any random
uncertainty components have been fossilized and u,, is a
systematic standard uncertainty.

The estimation of u , for a range of practical V&V
situations is demonstrated in Section 5, and a discussion
of the interpretation of the results of a validation effort is
presented in Section 6.

A comprehensive end-to-end example of the applica-
tion of the techniques covered in Sections 1 through 6 is
presented and discussed in Section 7.

1-7 REFERENCES

[1] Coleman, H. W. and Stern, F.,, “Uncertainties in CFD
Code Validation,” ASME ]. Fluids Engineering, Vol. 119,
pp- 795-803, Dec. 1997.

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

[2] Guide to the Expression of Uncertainty in Measurement
(corrected and reprinted, 1995), International Organization
for Standardization, Geneva, Switzerland, 1995.

[3] ASME PTC 19.1-2005, Test Uncertainty, 2006.

[4] Coleman, H. W. and Steele, W. G., Experimentation,
Validation, and Uncertainty Analysis for Engineers, 3™ ed.,
John Wiley & Sons, New York, 2009.

[5] International Vocabulary of Basic and General Terms
in Metrology, 2" ed., International Organization for Stan-
dardization, Geneva, Switzerland, 1993.

[6] ATIAA G-077-1998, Guide for the Verification and
Validation of Computational Fluid Dynamics Simulations.

[7] ASME V&V 10-2006, Guide for Verification and Vali-
dation in Computational Solid Mechanics.

[8] Roache, P. J., Verification and Validation in Compu-
tational Science and Engineering, Hermosa Publishers,
Albuquerque,1998.

[9] Joint Committee for Guides in Metrology,
“Evaluation of Measurement Data — Supplement 1 to the
‘Guide to the Expression of Uncertainty in Measurement’
— Propagation of Distributions using a Monte Carlo
Method,” JCGM 101:2008, France, 2008.

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

Section 2
Code Verification and Solution Verification

2-1 GENERAL

This Section is ultimately concerned with the evaluation
of the uncertainty of a numerical solution due to numeri-
cal error, denoted by u__in eq. (1-5-10), Section 1. Prior
to estimating u_ it is necessary to verify the code itself
[i.e., to determine that the code is free of mistakes (code
verification)]. Solution verification is then the process to
estimateu .

2-2 INTRODUCTION

The objective of verification is to establish numeri-
cal accuracy, independent of the physical (modeling)
accuracy that is the subject of validation. The necessity
for requiring quantitative assessment of numerical ac-
curacy was first formally asserted in the editorial policy
statement of the ASME Journal of Fluids Engineering [1]
and subsequently updated in two revised policy state-
ments [2, 3]. As described in Section 1, code verification
is distinct from solution verification and must precede
it, even though both procedures utilize grid conver-
gence studies. In general, code verification assesses
code correctness and specifically involves error evalua-
tion for a known solution. By contrast, solution verifica-
tion® involves error estimation, since the exact solution
to the specific problem is unknown. Code and solution
verification are mathematical activities, with no concern
whatsoever for the agreement of the simulation model
results with physical data from experiments; that is the
concern of validation. Note, however, that the solution
and its error estimation from a solution verification will
be used in the validation process. In this way, code veri-
fication, solution verification, and validation are cou-
pled into an overall process for assessing the accuracy
of the computed solution.

The verification methods discussed in this Section
are specific to grid-based simulations. These include
primarily finite difference, finite volume, and finite el-
ement methods in which discrete grid intervals are de-
fined between computational nodes. The grids may be
unstructured or structured (including nonorthogonal

5The term “solution verification” is used in this Standard; in other
references the term “calculation verification” is also used inter-
changeably with “solution verification” and is the equivalent term
used by Freitas [2] and in the ASME V&V 10-2006 Guide.

boundary-fitted grids), two-dimensional or three-
dimensional, quadrilateral (or hexahedral), or triangu-
lar (or tetrahedral), and static or dynamic.®

The remainder of this Section 2 provides a recom-
mended approach to successfully completing a code and
solution verification effort. Code verification is treated
throughout subsection 2-3. Solution verification is treated
throughout subsection 2-4.

2-3 CODE VERIFICATION

Code verification, establishing the correctness of the
code itself, can only be done by systematic discretiza-
tion convergence tests and monitoring the convergence
of the solutions towards a known “benchmark” solution
(i.e., a standard of comparison). The best benchmark
solution is an exact analytical solution (i.e., a solution
expressed in simple primitive functions like sin, exp,
tanh, etc.). Further, it is not sufficient that the analytical
solution be exact; it is also necessary that the solution
structure be sufficiently complex that all terms in the
governing equation(s) of the code being tested are ex-
ercised.

A perception may exist, and has often been stated in
research journal articles, that general accuracy verifica-
tion of codes for difficult problems (e.g., the full Navier-
Stokes equations of fluid dynamics) is not possible
because exact solutions exist only for relatively simple
problems that do not fully exercise a code. This percep-
tion has resulted in a haphazard and often piecemeal
approach to code verification. In actuality, there exists
a systematic approach based on grid convergence tests
that is both tractable and effective (subsection 2-3.3).
Some modeling approaches such as large eddy simula-
tion (LES) and direct numerical simulation (DNS) may
pose some challenges to the use of grid convergence
for assessing code accuracy, but fundamentally the ap-
proach discussed in this standard may be applied (see
subsection 2-5 for an additional discussion).

®Dynamic grid methods include adaptive, Lagrangian, or
arbitrary Lagrangian Eulerian. Free Lagrangian methods such as
discrete vortex and discrete element methods may also use the
approach defined in this Section, where the Lagrangian markers
and initial distribution can be viewed as analogous to a grid dis-
tribution. Based on the initial distribution of Lagrangian markers,
a refinement strategy may be deployed to determine “grid” conver-
gence order and an assessment of uncertainty.
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2-3.1 Requirements of Code Verification

The process of developing a computer code for non-
linear partial differential equations (PDEs) necessarily
involves much testing and evaluation of algorithms and
coding. Mostly, this is performed for sets of simplified
problems with analytical solutions. For example, a 3-
D time-dependent fully nonlinear Navier-Stokes code
will probably have been tested on a simple 1-D linear
advection-diffusion equation, a 2-D or 3-D Burgers equa-
tion, and other such problems. These tests are helpful in
ascertaining code performance, and classical analytical
solutions for restricted problems (e.g., heat conduction)
can sometimes provide convincing evidence for code
verification. For more general problems (e.g., Reynolds-
Averaged Navier-Stokes codes), while these piecemeal
analytical solutions taken all together can constitute
a partial or informal code verification, they are often
inadequate to convincingly demonstrate that the code is
correct for the targeted problems.

To achieve convincing code verification, one needs
an exact analytical solution or family of solutions that
exercises all the relevant features of a code (e.g., vari-
able properties, nonlinearities, turbulence model, etc.).
It is well known that even the laminar Navier-Stokes
equations do not have known analytical solutions for
any but the most trivial boundary and initial condi-
tions. Fortunately, a very general procedure does exist
for generating exact analytical solutions required for ac-
curacy verification of codes. This procedure, the method
of manufactured solutions (MMS), is described in sub-
section 2-3.3.

In today’s simulation community, many engineers
are using commercial tools provided by a vendor. In
general, the vendor community has attempted to ad-
dress code verification, and many follow software
quality control protocols to address coding accuracy.
However, the CFD/CHT (computational fluid dynam-
ics/computational heat transfer) research community
has found that the documentation of code verifica-
tion provided to users by vendors is often inadequate.
Therefore the commercial code user is cautioned not to
rely on vendor verification of a code. The user should
recognize that, even though a commercial code may
have enjoyed widespread use and even verification for
some problems, the code may not have been verified for
the specific problems that the user intends to solve. It is
always useful to obtain from the vendors the available
documentation on their code verification, but it is also
recommended that the user perform a code verification
independently.

2-3.2 Code Option Combinations

The practical difficulties arising from the large numbers
of user input options and combinations are widely recog-
nized,butareoftenexaggerated,asdiscussedbyRoache[4].
Briefly, option combinations are countable, and pessimistic

computer science conclusions about complex codes being
unverifiable are based on unrealistic conditions like “ar-
bitrary complexity.” Furthermore, the number of option
combinations required often can be greatly reduced by
“partitioning the option matrix” [4] based on common
sense and knowledge of code structure (a “glass box”
philosophy [5] as opposed to the more demanding “black
box” philosophy). Failing this, codes can be verified only
for a subset of option combinations. In fact, this is the most
practical approach to take for a commercial code user. The
generality of the MMS approach described next will reduce
these difficulties arising from option complexity because
less testing will be required for each option combination
compared to a less formal approach to code verification.

2-3.3 Method of Manufactured Solutions (MMS)

The method of manufactured solutions (MMS) [4-8]
provides a methodology for code verification that has
been successfully demonstrated in a variety of codes. It
is applicable to codes based on the solution of partial dif-
ferential or integro-differential equations (usually, nonlin-
ear systems of equations) — the subject of this document
and of much of computational science and engineering.
For some mathematical models, the method can be set
up with no special code requirements, but this subsection
will outline the most general and easy-to-apply approach,
which requires code features that may not be already built
into the computer code (i.e., the ability to incorporate user-
written subroutines and the ability to handle source terms
and nonhomogeneous boundary conditions). The follow-
ing discussion of MMS is given to provide a general sense
of the method; detailed examples of the implementation
of the method are given in Nonmandatory Appendix A for
a heat conduction problem.

Asnoted previously, Code Verification requires an exact,
analytical solution to a nontrivial problem that covers the
same options as the problem to be eventually addressed
with the verified code. The formulation of an exact, ana-
lytical solution may seem difficult for nonlinear systems
of PDEs, but in fact it is relatively easy. MMS starts at the
end, with a sufficiently complex solution form (e.g., hy-
perbolic tangents or other transcendental functions). A
linear solution, however, would not exercise the terms
in our PDEs. Also, tanh is easily evaluated and differen-
tiated, and contains all orders of derivatives (other func-
tional forms also possess this attribute). One can use tanh,
or another nonphysical analytical solution, or a physically
realistic solution (an approximate solution to a physical
problem) in the MMS method as long as sufficient com-
plexity is embedded in the functional form.

2-3.3.1 Simple 1-D Example of MMS. To emphasize
the generality of the MMS concept, as in references [4, 6, 7]
the example solution is selected before the governing equa-
tions are specified. Then the same solution may be used for
different problems, where the problem consists of a set of
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governing PDEs and boundary conditions. The chosen
solution V(t,x) in this example is the following:

V(t,x)=A+sin(B), B=x+Ct  (2-3-1)

This 1-D transient solution is applied to the nonlinear
Burgers equation, often taken as a model problem for
CFD algorithm development [4].

Jv/dt = —vdv/dx + ad*v/Ix* (2-3-2)

or, using the more compact subscript notation to indicate
partial derivatives,

v,= —vv, + av,_, (2-3-3)

t

Incidentally, this specified solution V(t,x) is the exact
solution for the constant velocity advection equation with
boundary condition of v(t,0) = A + sin(Ct). However,
the physical realism of the solution selected for MMS is
irrelevant to the code verification process. All that is re-
quired of the solution is that it be nontrivial, and that it
exercise the computational algorithm appropriately.

The source term Q(t,x) is determined that, when added
to the Burgers equation for v(t,x), produces the solution
v(t,x) = V(t,x). The Burgers equation is written as an op-

erator (nonlinear) of v,
Lo)=v,+vv —av_=0 (2-3-4)

Then the source function Q that produces V by operat-

ing on V with L is evaluated.
Q(t, x)=L[V(t, x)]=9V/dt + VIV /dx — ad?V/dx* (2-3-5)

By elementary operations on the manufactured
solution V(t,x) stated in eq. (2-3-1),

Q(t, x) =C cos(B) + [A + sin(B)] cos(B) + a sin(B)  (2-3-6)
If the modified equation is now solved
L) =09, +vv — av_ = Q(t, x) (2-3-7)
or
v,=—ovo_+ av_+ Qt x) (2-3-8)

with compatible initial and boundary conditions, the
exact solution of the modified problem will be V(tx)
given by eq. (2-3-1).

The initial conditions are obviously just v(0,x) = V(0,x)
everywhere. The boundary conditions are determined from
the manufactured solution V(t,x) given by eq. (2-3-1). Note
that the domain of the solution is not even specified as yet. To
consider the usual model 0 = x = 1 or something like —10 =
x = 100, the same solution eq. (2-3-1) applies, but of course,
the boundary values are determined at the corresponding
locations in x. Note also that the fype of boundary condi-
tion as yet has not been specified. This aspect of the meth-
odology has often caused confusion. It is widely known that
different boundary conditions on a PDE produce different
answers, but not everyone recognizes immediately that the
same solution V(t,x) can be produced by more than one set
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of boundary condition types. The following combinations
of inflow (left boundary, e.g., x = 0) or outflow (e.g., x = 1)
boundary conditions will produce the same solution V(t,x)
over thedomain 0 = x = 1.

Dirichlet-Dirichlet:

u(t, 0) = V(t,0) = A + sin(Ct) (2-3-9)

v(t, 1) = A +sin(1 + Ct) (2-3-10)
Dirichlet-Outflow Gradient (Neumann):

u(t, 0) = V(t,0) = A + sin(Ct) (2-3-11)

dv/ox|(t, 1) = cos(1 + Ct) (2-3-12)

Robin (Mixed)-Outflow Gradient (Neumann):

av + bdv/dx = ¢ at (t,0). Given a and b, select
¢ =a[A + sin(Ct)] + b cos(Ct) (2-3-13)

dv/dx|(t, w) = cos(w + Ct) (2-3-14)

For this time-dependent solution, the boundary values
are time-dependent as well. It also will be possible to
manufacture time-dependent solutions with steady
boundary values, if required by the code. In reference [7],
the same solution is applied to a new and more compli-
cated Burgers-like PDE that might be a candidate for a
1-D turbulence formulation based on the mixing length
concept. A third example in reference [7] uses a physi-
cally unrealistic manufactured solution; other examples
are given in references [4, 8].

2-3.3.2 General Operator Formulation of MMS. In
the general MMS approach, the problem is written
symbolically as a nonlinear (system) operator L.

Liftx,y,z, ] =0
Choose a manufactured solution and denote it by M.
=M,y zt) (2-3-16)

The problem is now changed to a new operator, L’,
such that the solution to

L'[flx,y,z,)] =0

is exactly the manufactured solution M. The most gen-
eral and straightforward approach is to determine L’ by
adding a source term to the original problem.

L'fT=LIf1 - Q

The required source term is evaluated by passing the
manufactured solution M through the operator, L.

Q= L[M] (2-3-19)

(2-3-15)

(2-3-17)

(2-3-18)

So instead of solving the original problem L(f) = 0 with
an unknown solution, L(f) = Q [or equivalently, L'(f) =
0], which has the known solution, M, is solved. Bound-
ary values, for any boundary condition to be tested, are
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determined from the manufactured solution, M, as are
the initial conditions.

Armed with a nontrivial exact analytical solution, M,
one may perform grid convergence tests on the code and
verify not only that it converges, but also at what rate it
converges. Further, the magnitude (and sign) of the error
is directly computed from the difference between the
numerical solution and the analytical solution.

For complex models involving much chain-rule dif-
ferentiation, computer Symbolic Manipulation is recom-
mended for evaluating the source term, Q. It is not even
necessary to look at the complex continuum equations
and then encode them. Rather, one can just use the code-
writing capability of a commercial Symbolic Manipula-
tion code to produce a source code segment (in Fortran,
C, etc.) for the source term.

For conciseness of presentation, no further examples
are presented in this Section on the basic concept of MMS.
However, a detailed example on an easily replicated prob-
lem is given in Nonmandatory Appendix A. Even this brief
description of MMS will be sufficient for many readers to
get started using it, but a potential user may not see all the
ramifications at first glance. Many details and issues are
addressed in references [4, Chapter 3; 6-8].

2-3.3.3 Application of MMS to Verification of
Codes. Once a nontrivial exact analytic solution has been
generated, by this method of manufactured solutions or
perhaps another method, the solution is now used to verify
a code by performing systematic discretization convergence
tests (usually, grid convergence tests) and monitoring the
convergence as h — 0, where 1 is a measure of discretization
[e.g., Ax (in space), At (in time) in a finite difference or fi-
nite volume code, and element size in a finite element code,
number of vortices in a discrete vortex method, number of
surface facets in a radiation problem, etc.].

The principal definition of “order of convergence” is
based on the behavior of the error of the discrete solu-
tion. There are various measures of discretization error
E,, but in some sense this discussion is always referring
to the difference between the discrete solution f(/) (or a
functional of the solution, such as lift coefficient) and the
exact (continuum) solution,

Eh :f(h) _fexact

For an order p method and a well-behaved problem, the
error in the solution E, asymptotically will be proportional
to /7. This terminology applies to the “consistent” method-
ologies of finite difference methods (FDM), finite volume
methods (FVM), finite element methods (FEM), vortex-in-
cell, etc., regardless of solution smoothness.” Thus,

E, = f(h) — fo*=CH’ + HO.T

(2-3-20)

(2-3-21)

7 This order of convergence description will not apply to global
spectral methods or to p-refinement FEM, but the exact solutions of
MMS will still be useful for code verification.
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where H.O.T. are higher order terms. (For smooth
problems, it may be possible in principle to evaluate
the coefficient C and the H.O.T. from the continuum
solution, but as a practical matter, this is not done in
the accuracy verification procedure.) The discretization
error is then monitored as the grid is systematically
refined. Only refinement — not successive grid halving
— is required. It should be noted, however, that for a
meaningful assessment of p, grid refinement should
not be trivial (a minimum value of 1.3 is recommended
in subsection 2-4). In addition, thorough iterative
convergence is required. Theoretically [from eq. (2-3-
21)], values of C = E, / " should become constant as
the grid is refined for a uniformly p-th order method,
“uniformly” implying at all points for all derivatives.
Graphical presentation is also common; the slope of E,
vs. ¥ should become constant. Examples will be given
in Section 7; details and many other examples are given
in reference [4].

2-3.3.3.1 Differences Between Observed p and
Theoretical p. The value of the observed p versus a the-
oretically expected value of p provides valuable insights
to the numerical error in the computer code. If the values
of the observed p and the theoretical p vary greatly from
each other, then this indicates one of several possible is-
sues:

(a) the grid convergence study has not been carried
out to a sufficient level of refinement

(b) there are more significant errors being generated
in the code than those due to discretization and thus a
detailed review of the code is required

(c) boundary conditions may not be appropriate (e.g.,
some convective outflow boundary conditions set by
simple vortex models are not ordered in /, or the imple-
mentation of the boundary condition is flawed such that
the global order is affected, or the boundary conditions
over-constrain the problem and propagate into the inte-
rior, thus reducing the observed order)

(d) initial conditions may not be appropriate (e.g.,
exact continuum initial conditions may not be compat-
ible with solutions to the discretized equations, or are
incompatible with the boundary conditions)

(e) incomplete iterative convergence and round-off
errors

2-3.3.3.2 Verification of a Systematic Grid Conver-

gence Test. Finally, when a systematic grid conver-
gence test is verified (for all point-by-point values), then
the following have been verified:

(a) any equation transformations used (e.g., nonor-
thogonal boundary fitted coordinates)

(b) the order of the discretization

(c) the encoding of the discretization

(d) the matrix solution procedure

As with any nontrivial technique, there are always ad-
ditional details and subtleties in the application that a
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serious user should be aware of. This is true for MMS.
The reader is directed to Nonmandatory Appendix C for
additional details and summary points relevant to the
advanced use of MMS.

2-3.3.4 Code-to-Code Comparisons. Verification
of codes is sometimes approached by code-to-code
comparisons. The idea is to take the solution(s) of a pre-
viously verified code as the benchmark. This can be done
at two levels of applications:

(a) solutions on a specific grid

(b) “grid-free” solutions (i.e., high resolution solutions
that are taken as good approximations to the exact solu-
tions, such as with Direct Numerical Simulations)

The first approach can be useful and economical, but
it requires that both codes have identical discretiza-
tions: not only at interior points, but also at all boundary
points. It also requires tight iterative convergence toler-
ance (in essence, close to machine-zero convergence). In
practice, it is effective when the new code to be verified
is a new version of the previously verified code, and the
new version does not change any of the discretizations.
For example, the new version might contain a new lin-
ear solver, or simply use a new compiler or hardware
platform (an important and practical situation). Such
comparisons can be done advantageously even on very
coarse grids. However, beyond this limited though
important application, this approach will not give very
convincing results because of the tolerances involved. It
can be used economically to develop confidence during a
code development program (even if the benchmark code
does not use identical discretizations) but the tolerances
involved will usually be too crude or large to enable truly
convincing verification [4].

The same follows for the second approach. In princi-
ple, this would work if the benchmark code were itself
thoroughly verified and if the solutions were indeed
“grid-free” or have resolved all the pertinent length
scales of the problem (possibly down to viscous dissipa-
tion) as is the requirement for Direct Numerical Simula-
tions (DNS). In general, however, small coding errors can
be masked by the lack of complete agreement due to the
fuzziness of the benchmark. As with the first approach, it
can be used economically to develop confidence during a
code development program, but a more convincing and
credible (final) code verification will always be attained
by the preferred approach of MMS. Note that DNS re-
sults are often used as being equivalent to “whole-field
experimental data,” which then are used to assess pre-
dictive performance of Large Eddy Simulation subgrid
scale models. However, this should not be confused with
a formal verification and validation effort as discussed in
this Standard, but rather is a strategy for developing new
subgrid scale models.

Similar evaluation applies to the common approach
of validation by code-to-code comparisons. In prin-
ciple, one could view a previously validated code as a

11

benchmark repository of experimental data including
interpolation algorithms (by solving nonlinear PDEs).
The benchmark code must be accurate to be worth-
while; there is nothing to be gained by comparison with
another code that is merely old. In historical practice,
code-to-code comparisons for code verification and val-
idation have been notoriously unsatisfying. It is more
convincing to perform validation by direct comparison
with experimental data. For further discussion see ref-
erence [4].

The methods discussed above do provide valuable
support in the development of computer codes and
models. And these are approaches that should be rou-
tinely used to support development and enhancement of
codes. However, these are not appropriate methods for
a formal, convincing, and documented verification and
validation effort.

2-4 SOLUTION VERIFICATION

Prior to performing solution verification, it is assumed
that code verification has been completed and docu-
mented.

Systematic grid refinement is the cornerstone of veri-
fication processes for either codes or solutions [4-9].
Whereas grid-refinement studies in the context of code
verification provide an evaluation of error, grid-refine-
ment studies used in solution verification provide only
an estimate of error. The most widely used method to
obtain an error estimate is classical Richardson Extrapo-
lation (RE) [10, 11]. Since its first elegant application by its
originator, L. F. Richardson, in 1910 and later in 1927, this
method has been studied by many authors. Its intrica-
cies, pitfalls, and generalizations have been exhaustively
investigated and cataloged [4, 9-12]. A generalized RE
and a Least Squares version [13] are more widely ap-
plicable to difficult problems. There are also single grid
error estimators (notably Zhu-Zienkiewicz estimators) of
more specialized application [4, 14].

Error estimates and uncertainty estimates are related
but are not equivalent, and confusion is common. An
error estimate is intended to provide an improvement to
the result of a calculation. For example, if the result of a
calculation for heat transfer coefficient using a particular
grid is f and the error estimate is &, then an improved
value (closer to the true value f,) is f — &. On the other
hand, an (expanded)® uncertainty estimate U ,, is intended
to provide a statement that the interval f = U , character-
izes a range within which the true (mathematical) value
of f, probably falls, with probability of x%.

Quantifying that probability is the goal of uncer-
tainty estimation. A common uncertainty target (for both

8 By contrast, the standard uncertainty u has no level of probability
inherently associated with it until a distribution of errors is assigned;
this will be discussed more in Section 6.
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experiments and computations) is ~95% (i.e., ~20:1 odds
that the true value f, is in fact in the interval f * U,_),
where U, is the estimate of the (expanded) uncertainty
at the 95% confidence level. Note that this target confi-
dence level is compatible with the 20 range for a Gauss-
ian distribution, but the concept and the semi-empirical
methods presented here do not depend on the assump-
tion of Gaussian distribution or any other distribution.

Uncertainty estimates (U,,) can be calculated by
Roache’s [4, 14-16] Grid Convergence Index (GCI). The
GClI is an estimated 95% uncertainty obtained by mul-
tiplying the absolute value of the (generalized) RE error
estimate (or any other ordered error estimator) by an
empirically determined factor of safety, Fs. The Fs is in-
tended to convert an ordered error estimate into a 95%
uncertainty estimate. (Since all ordered error estimators
for the same quantity will asymptotically produce the
same error estimate, the GCI factor of safety Fs could
be applied to any of these, at least asymptotically; the
empirical value of Fs has been determined from RE es-
timates.)

Richardson Extrapolation is based on the assump-
tion that discrete solutions, f, have a power series
representation in the grid spacing, h. If the formal
order of accuracy of an algorithm is known, then the
method provides an estimate of the error when using
solutions from two different grids. If the formal order
of accuracy is not known, then three different grid so-
lutions are required to determine the observed order
of convergence and the error estimate. Although grid
doubling (or halving) is often used with RE, it is not
required [4], and the ratio of grid spacing, r, may be
any real number. Integer grid refinement is not re-
quired; it has an advantage of simplicity (especially
for local values that can be co-located in the grid fam-
ily) but can cause difficulty. For example, when the
finer grid is just sufficient to resolve scales of inter-
est (e.g., boundary layer resolution) then a coarse grid
with half the resolution may be insufficient for the
problem being simulated.

Before any discretization error estimation is calcu-
lated, it must be ensured that iterative convergence is
achieved. (Iterative methods are always required for
nonlinear problems solved by implicit formulations and
may be used as part of an explicit formulation as well.)
Otherwise, the incomplete iteration error will pollute
the uncertainty estimation. (RE amplifies incomplete
iteration errors [4].) A commonly used but unjustifiable
rule of thumb is to require at least three orders of magni-
tude decrease in properly normalized residuals for each
equation solved over the entire computational domain.
This criterion is used as a default in some commercial
codes, but is demonstrably inadequate for many prob-
lems even for basic accuracy, without considering the
added requirements of uncertainty estimation. Results
in references [17, 18] belie the casualness of this rule.
For time-dependent simulations, iterative convergence

at every time step should be checked, and example
convergence trends should be documented for selected,
critically important, variables. The preferred approach
is to reduce the iterative error to a level negligible com-
pared to the discretization error. This does not necessar-
ily require iteration to (nearly) machine zero.

Iteration error and its interaction with discretization
error has been thoroughly studied in reference [18] for
one class of problems; there is no reason to assume
that other problems are more benign. A method for
estimation of iteration error based on extrapolating by
geometric progressions was developed and justified,
and applied to realistic turbulent flows. These results
show that the iteration error needs to be 2 to 3 orders
of magnitude smaller than the discretization error to
guarantee a negligible influence. This is often assumed,
although seldom demonstrated convincingly. If the
uncertainty u, contributed by the (estimated) iteration
error is much less than u, contributed by the (ordered)
discretization error, then we take the numerical uncer-
tainty u_ _ to be

(2-4-1)

If more care is taken and u; is to be added, it is not
adequate (conservative) to use RMS addition, because
the iteration error affects the results for discretization
error (i.e., u, and u, are not uncorrelated), violating
the underlying assumption of RMS addition. Rather,
the two must be combined by less optimistic simple
addition [18].

u =u, +u

o (2-4-2)

Application of RE and GCI often encounter some dif-
ficulties in practical problems. Local values of predicted
variables may not exhibit a smooth, monotonic depen-
dence on grid resolution, and in a time-dependent cal-
culation, this nonsmooth response will also be a function
of both time and space. However, integral quantities like
overall heat transfer coefficient, lift coefficient, etc. are
usually better behaved (i.e., are more likely to converge
monotonically). The GCI, especially the Least Squares
versions pioneered by Eca and Hoekstra [13; see also 14,
19, 20 in Nonmandatory Appendix C], is currently the
most robust and tested method available for the predic-
tion of numerical uncertainty.

The influence of the outflow boundary position on
the interior solution will depend on the outflow condi-
tion used and on the distance to the outflow boundary.
The errors of these approximations do not vanish as
h — 0, and hence are “nonordered approximations” or
modeling errors rather than discretization errors. (See
also Nonmandatory Appendix C.) The same can be
stated for other far-field boundaries. The adequacy of
these approximations should be assessed by sensitiv-
ity tests [4] at least on similar problems, but unfortu-
nately in practice these tests are not often addressed
convincingly.
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2-4.1 Five-Step Procedure for Uncertainty Estimation

A five-step procedure is defined below for the applica-
tion of the Grid Convergence Index (GCI) method [3].

Step 1:

Step 2:

Step 3:

Copyright ASME International
Provided by IHS under license with ASME

No reproduction or networking permitted without license from IHS

Define a representative cell, mesh, or grid size,
h. For example, for three-dimensional, struc-
tured, geometrically similar grids (not necessar-
ily Cartesian),

h=[(Ax,, )y, Az, )]"7° (2-4-3)

For nonstructured grids one can define

£ sl

i=

h= (2-4-4)

where

N = total number of cells used for the computations
AV, = volume of the i" cell [4]

Select three significantly different sets of grid
resolutions and run simulations to determine
the values of key variables important to the ob-
jective of the simulation study (e.g., a variable
¢). There are some advantages to using integer
grid refinement but it is not necessary. It is desir-
able that the grid refinement factor,» =h___ /b, .
should be greater than 1.3 for most practical
problems. This value of 1.3 is again based on
experience and not on some formal deriva-
tion. The grid refinement should, however, be
made systematically; that is, the refinement
itself should be structured even if the grid is
unstructured. Geometrically similar cells in
the grid sequence are required to avoid noisy
and erroneous observed p. It is highly recom-
mended not to use different grid refinement fac-
tors in different directions (e.g., r. = 1.3 and T
= 1.6), because erroneous observed p values are
produced, as shown in [21]. (The computational
solutions still converge to the correct answers
with 7_# r, but the observed rate of conver-
gence p is affected.)

Leth <h,<h and r, = h/h,r, = h,/h, and
calculate the apparent (or observed) order, p, of
the method from reference [4]

p= [1/1n(r21)][1n|a32/321| + q(p)] (2-4-5)

a(p) = n (=) (2-46)
s =1-sign(e,,/s,) (2-4-7)

where e, = ¢, — ¢,, 5, = ¢, — ¢, and ¢, de-
notes the simulation value of the variable on the
k™ grid. Note that q(p) = 0 for r = constant. This
set of three equations can be solved using fixed
point iteration with the initial guess equal to the
first term (i.e., g = 0).

A minimum of four grids is required to dem-
onstrate that the observed order p is constant for

a simulation series. A three-grid solution for the
observed order p may be adequate if some of the
values of the variable ¢ predicted on the three
grids are in the asymptotic region for the simu-
lation series. In fact, it may require more than
four grids to convincingly demonstrate asymp-
totic response in difficult problems, possibly five
or six grid resolutions in cases where the con-
vergence is noisy [13, 19, 20]. It is all dependent
on the initial grid resolution used and where the
predicted value of ¢ lies as a function of grid
resolution. However, to provide a balance be-
tween providing both a tractable method and
ensuring a level of accuracy in the predicted ob-
served order p, at least a three-grid study should
be performed. If the solution verification error
and uncertainty terms &, and u,,, respectively,
are then found to be small compared to the other
8, and u, terms in this Standard, three grids may
then be sufficient. If not, then more grids will be

required.

Step 4: Calculate the extrapolated values from the
equation

oo = (the, — @,)/Ith — 1) (2-4-8)

Step5: Calculate and report the following error
estimates along with the observed order of the
method p. Approximate relative error may be
cast as a dimensionless form [eq. (2-4-9)] or in a
dimensioned form [eq. (2-4-10)]:

¢

et (2-4-9)

21 __

a

e = |¢, — @ (2-4-10)

If ¢, is zero or the user wishes to calculate u__
(see eqgs. 2-4-13 and 2-4-14) then one should use
eq. (2-4-10).

Estimated extrapolated relative error:

21
] R (2-4-11)
Pext
The fine Grid Convergence Index:
21
cerz, = 5 (2-4-12)
=1

The relative error estimates and the GCI may use nor-
malizing based on values other than local values; in fact,
this is often advantageous for avoiding indeterminacies.
Also, the error estimates and the GCI may use dimen-
sional values instead of relative or normalized values
[4, pp. 113, 115]. This is often the more natural choice for
use with experimental results and will be used in the ex-
amples in Section 7.

The Factor of Safety, Fs, originally was assigned a
value of 3 for two-grid studies [16], but Roache [4] has
subsequently recommended a less conservative value
for Fs = 1.25, but only when using at least three grid
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solutions and the observed p. He arrived at this value
through empirical studies, and this value roughly cor-
relates with the definition of uncertainty U used in ref-
erences [22, 23] and suggests that using a value of 1.25
results in a GCI with a 95% confidence interval. Fur-
ther experience in hundreds of CFD cases (more than
500 demonstrated cases) by dozens of groups has sup-
ported this empiricism [4, 13, 14, 15, 19, 20, 24]. Based
on this current evidence, we recommend that a value
of Fs = 1.25 be used with three-grid studies involving
structured grid refinement. (Note that a base grid may
be unstructured, but the grid sequence may be gener-
ated by structured refinement of an unstructured grid
[4].)

The value of Fs = 1.25 has not been thoroughly evalu-
ated for unstructured refinement. Scatter in observed
p is to be expected because the grid refinement factor
r is well defined only for geometrically similar grids.
The accuracy of the GCI will obviously depend on the
quality of the unstructured grid refinement algorithm.
Until a sufficient data set is collected and studies are
completed for unstructured refinement, it is generally
recommended that the more conservative value of
Fs = 3 be used to obtain a GCI for unstructured grid re-
finement. (The results to be presented in Section 7 are
well behaved, and Fs = 1.25 is sufficient.)

If the calculated order of the method p is less than 1.0,
an uncertainty band may also be given by assuming p =
1.0. This is done not to ignore the observed p, but sim-
ply to give two calculations, one with the observed p and
one with p = 1.0, as an indicator of the sensitivity of the
error band to the observed value of p. However, the GCI
computed with the observed p < 1 is the more conserva-
tive approach. It should also be noted that if the observed
value of p is significantly different from the expected
order of the method (for example, the method might be
expected to be third-order for the primary variables but it
is observed to be less than 1), then one should delve into
the root cause of this difference. It may suggest a pos-
sible error in the method or its implementation, or that
the grid resolutions are not in the asymptotic region, or
that a singularity is present. (See references [25, 26] for
methods to detect and distinguish singularities during
grid convergence studies.)

The form of the GCI is based on theory, but the use
of absolute values for estimated errors and the factor Fs
are based on empiricism involving the examination of
several hundred CFD case studies. The empirical tests
involved the determination of conservatism in 95% of
the cases, corresponding to (dimensional) GCI = U_
at 95% confidence. No assumptions on the form of the
error distributions were made nor were necessary for
these empirical studies, since actual data was examined
with a simple pass/fail criterion. Specifically, the com-
mon statistical assumption of a Gaussian distribution
was not used. To agree with the new international stan-
dard use of one standard deviation o, eq. (1-5-10) was
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developed using 1o, and the corresponding uncertainty
isu_ . If the procedure adopted for the other uncertainty
components is to base everything on the commonly used
expanded uncertainty level U, then U = GCI and
no assumption of a distribution is required. Otherwise,
to convert this (partially) empirical GCI from U to the
u_ - needed in eq. (1-5-10) it is now necessary to make an
assumption. If the distribution were Gaussian about the
fine grid solution, the value of u_ _ would be obtained
using an expansion factor k = 2, and the required term
for eq. (1-5-10) would be

u =U_ /k=GCI/2

- (2-4-13)

However, the error distribution about the fine grid so-
lution is roughly Gaussian only for poorly behaved prob-
lems (oscillatory convergence). For well behaved and
highly resolved problems, the error distribution is roughly
Gaussian not about the fine grid solution ¢, but rather
about the extrapolated solution @2, of eq. (2-4-8) [i.e., the
fine grid solution ¢, plus the estimated signed error eZl of
eq. (2-4-11)]. Thus the error distribution about the fine
grid solution is roughly a shifted Gaussian. Analyses of
this situation indicate an expansion factor k = 1.1 to 1.15
to obtain a conservative value for u_,

m

u /k=GCI/1.15

num

u (2-4-14)

num

If the overall u_, is later expanded to U, using k = 2,
the numerical contribution will then be more conserva-
tive than 95% (see Section 6).

The five-step procedure presented in this section
makes no distinction between steady state computa-
tions or time-dependent computations. The method is
independent of temporal resolution in the sense that At
does not appear in any of the equations. So, for time-
dependent computations, the five-step procedure should
be applied at each relevant time step in the computation
at a given node. However, it should be noted that as the
spatial grid is refined during the convergence study, the
size of At is likely decreasing as well due to numerical
stability issues and thus At is implicitly accounted for in
the convergence study. Although not discussed here, it
has been shown that the above procedure may be applied
accounting for both spatial and temporal grid conver-
gence explicitly. The At is treated just like Ax is treated.
However, some minor complications arise in the typical
case where the numerical methods have different orders
of accuracy in space and time, or even different orders
in different spatial directions, as may occur in boundary
layer codes [4].

Paragraphs 2-4.2 and 2-4.3 present example Solution Ver-
ifications for two realistic and difficult problems in CFD.
This Standard will also present examples for heat conduc-
tion problems that are less demanding numerically and
exhibit close to theoretical performance. But the following
two CFD problems are not so ideal, and the convergence
behaviors are representative of many real and practical
problems that the reader will likely need to deal with.
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2-4.2 Example 1: Turbulent Flow Over a Backstep

To demonstrate the results of the GCI calculation

Table 2-4-1 Sample Uncertainty Analysis:
Backward Facing Step

following this five-step procedure, data of Table 2-4-1 are L v Vip=1)
used from Celik and Karatekin ['12], where ste.ady, tur- 18,000 8,000 8,000
bulent flow over a backward facing step was simulated ! 8,000 4,500 4,500
on nonuniform structured grids with the total number Nj 4,500 980 980
of cells defined by three grid resolutions, N,, N,, and N.,. I 1.5 2.0 2.0
Two variables were used in the evaluation of uncertainies: r, 1.33 2.14 2.14
the dimensionless reattachment length, L, and the @, 6.06 10.8 10.8
axial velocity, V, at a specific location. In this particular # 5.97 10.7 10.7
study, two different sets of grid refinements were used ?5 i’gg (1)072 1008
for the two variables of interest. For the dimensionless Zfﬁ 6:17 1'0.9 16'9
reattachment length, L, the three grid resolutions used e2! 1.50% 0.58% 0.58%
were 4,500, 8,000, and 18,000 cells; while for the axial ve- el 1.71% 0.85% 0.58%
locity, V, three grid resolutions of 980, 4,500, and 8,000 GClin, 1.46% 1.06% 0.73%

cells were used. Since the order of the method in terms
of axial velocity is less than 1 in this example, column
four displays results where the value of p is assumed to
be 1. Based on this analysis with Fs = 1.25, the value of
the reattachment length would be reported as 6.06 = 0.09
(+1.46%), and the axial V velocity at a point as 10.8 *
0.12 (£1.06%).

The calculated values of observed p being noninteger
and less than the theoretical value (p = 2 in this case)
are not at all unusual in difficult applications, even for
thoroughly verified codes (often not the case for com-
mercial software). Real problems involving local high
gradients in the solution, and especially shock waves or
other singularities, reduce the observed p (or even the
actual asymptotic p [4]) because the locally large values
of higher-order solution derivatives cause higher-order
terms to be significant in the power-series expansion
of the discretization errors [4]. This example (and the
second, following) illustrates the importance of evalu-
ating the GCI using values of p observed for the actual
case under study, rather than theoretical values or code
verification studies based on well-behaved problems.

In many practical cases, the observed p’s calculated
over more than one grid triplet will be noisy, indicat-
ing erratic or even nonmonotonic convergence; in such
cases, a least-squares approach developed in references
[13, 14, 19, 20] is recommended (Nonmandatory
Appendix C). Alternative techniques with a choice of
GCI or other methods for oscillatory or nonmonotonic
convergence are discussed in references [25, 26]. Note,
however, that observed p values that approximate the
theoretical p can be obtained with good algorithms, good
grid generation, high resolution, and careful work, even
for time-dependent turbulent flows [4], or problems with
shock fronts. For heat conduction problems, it is com-
mon for observed p to be well-behaved, as demonstrated
in Section 7.

2-4.3 Example 2: Confined Detonation

Figure 2-4-1 provides another example of the five-step
procedure of the GCI calculation for a TNT charge deto-
nated in a rigid, fluid-filled box. The quantity of interest

Fig. 2-4-1 Sample Uncertainty Analysis: Explosive Detonation in a Fluid Filled Box
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15.6

15.4
15.2
15.0
14.8
14.6
14.4
14.2

—e— Bottom corners
—&— Top corners
—a— Center of x/y walls
—v— Center of zwalls

| —o— Fluid x/y midplanes | .
—O— Fluid z midplane

14.0
LR B o S SURN IS LIS NI S AT SRS CHES S S S
el i i i iy i i i T
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Grid Resolution
(Zones Across Diameter of Charge)

15

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

Table 2-4-2 Sample Uncertainty Analysis: Explosive Detonation

Location of Variable Corner Wall Fluid
Observed order p 1.7 1.5 1.02
GCl value (%) 1.2 1.6 3.6

Value = U
num

Value + u
num

Fine grid prediction

15.34 £ 0.18 MPa
15.34 = 0.16 MPa
15.47 MPa

15.23 £ 0.24 MPa
15.23 = 0.21 MPa
15.40 MPa

15.24 = 0.55 MPa
15.24 = 0.48 MPa
15.39 MPa

is the quasi-static pressure at various locations in the box
(shaded dots in left image) after a finite elapsed time in
the time-dependent simulation. The right image in this
figure displays the predicted value of pressure as a func-
tion of grid resolution at various measurement locations
predicted by the set of simulations. In this example, the
magnitude of pressure has a smooth dependence on grid
resolution. The basis for the grid resolution used is the
number of zones across the diameter of the charge.

Table 2-4-2 summarizes the results of the application of
the GCI to the explosive detonation problem. Here pres-
sures at three different locations are used [i.e., a node in
the corner of the box (corner), a node near the center of a
box side (wall), and a node at mid-distance between the
charge centerline and a box side (fluid)]. The second row
of the table provides the computed (observed) order of the
method, and the third row provides the computed GCI
using Fs = 1.25. To compute these values, the first four grid
resolutions (4, 8, 16, and 20 zones across the diameter of the
charge) were used. Rows four and five provide the range
in pressure as predicted by the GCI, but presented with the
uncertainty estimates of U _and u_ . The range of value
+U_ isintended to bound the exact mathematical solution
with a 95% confidence or a 20 uncertainty estimate, while
value *u___ (fifth row of Table 2-4-2) is a o uncertainty es-
timate. The sixth row in the table displays the predicted
value of pressure on the finest grid (resolution of 32 zones
across the diameter of the charge). The ranges displayed in
row four of the table should then bound the values here,
and they do, again, demonstrating both the validity of this
approach and the appropriateness of the magnitude of Fs
= 1.25 in the GCI method.

2-5 SPECIAL CONSIDERATIONS

The simulation variable, ¢, that is evaluated by the
five-step procedure of para. 2-4.1 can be any result of
the simulation: local values of the dependent variables
like u, v, p; volume-weighted RMS values; or integrated
functionals of the solution like lift coefficient or heat flux.
The same principles of solution verification apply in all
cases, but the following should be noted. First, integrated
functionals typically are better behaved (more smooth)
than local values and thus the observed p tends to be
less noisy. Second, different simulation variables can
cohverge at different rates. Third, the same techniques
for solution verification can be applied to derivatives of

16

integrated functionals with respect to input parameters,
as will be required in the following Section.

Care must be taken in determining the appropriate
grid resolution requirements for both the grid conver-
gence exercise and the grid resolution required to mini-
mally resolve the physics of the problem. For example,
if the problem to be solved has a specific range of length
scales that characterize the flow physics such as bound-
ary layers or thermal gradients, then the grid resolution
for the coarsest grid used in the grid convergence study
must still adequately resolve these length scales. This is
particularly important in the context of large eddy simu-
lation (LES). The LES filter width is usually related to a
measure of the grid resolution, and thus as the grid reso-
lution is changed during the grid convergence study, the
filter width also is changed. This means that the parti-
tioning of energy between the resolved and unresolved
scales is changing. Thus, if the users are not careful and
as the grid convergence study is executed, they may be
solving a different problem for some of the coarse-grid
resolutions if the boundary between resolved and unre-
solved scales changes significantly from grid to grid. The
same logic applies to direct numerical simulation (DNS)
as well, in that coarser grid resolutions may not resolve
the same set of appropriate flow scales adequately to
qualify the simulation as DNS. A DNS simulation by
definition resolves all pertinent flow scales (in frequency
domain) up to viscous dissipation.

Finally, the following is suggested as an approach to
effectively and efficiently perform and use a solution
verification exercise in applications. For the given prob-
lem to be simulated, the first step is to define a set of
simulation objectives (i.e., why the problem is being sim-
ulated, what quantities are of interest for prediction, and
what level of accuracy is required). Given the simulation
objectives, a nominal simulation problem is defined,
including boundary and initial conditions. This nominal
problem should be representative of the problem set to
be studied (where typically many simulations are per-
formed to achieve the problem solution). This nominal
problem will then serve as the basis for the solution veri-
fication grid convergence study. A detailed grid conver-
gence study of this specific, nominal problem is executed
with 3 to 6 levels of grid refinement (similar to the con-
fined detonation example problem of para. 2-4.3). Based
on the results of the solution verification for the nominal
problem, a base grid resolution is defined that achieves
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the simulation objectives for estimated accuracy. This
base grid resolution is then used in all subsequent simu-
lations for the particular problem. If, during the course
of the subsequent simulations, the problem definition
changes significantly such that the nominal problem no
longer is representative of the study, then a new nominal
problem should be defined and a new solution verifica-
tion performed.

2-6 FINAL COMMENT

At the conclusion of a code verification activity follow-
ing the procedures defined in this section, the analyst will
have determined potential code errors. It is assumed then
that these errors have resulted in modifications and en-
hancements to the computer code to eliminate or fix them.
Once a verified code is achieved for the application of in-
terest, then a solution verification effort following the pro-
cedures defined in this section will result in an estimate of
the uncertainty (u__) associated with a simulation result.
In many applications in engineering and scientific prac-
tice, these two procedures, code verification and solution
verification, may be all that is required for the application
of interest as dictated by project requirements or may be
all that is possible due to a lack of appropriate experimen-
tal data for validation. If that is the case, then successfully
completing a solution verification effort (which assumes
that it was preceded by a code verification effort) for the
application of interest will result in a significant step for-
ward in understanding the accuracy of a given simulation
study in that now it may be reported that the solution is a
value X with a numerical uncertainty of Y. However, at
this point in this Standard, the user can only state the esti-
mated magnitude of u__. One can not at this point assess
overall model accuracy. That can only be done through
validation, which requires the material presented in Sec-
tions 3 through 7 of this Standard.
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Section 3
Effect of Input Parameter Uncertainty on Simulation
Uncertainty

3-1 INTRODUCTION

This Section is concerned with the estimation of
simulation uncertainty due to uncertainty of the simula-
tion input parameters, denoted by u,  in eq. (1-5-10),
Section 1.

The validation uncertainty has been previously defined
in Section 1 as being composed of uncertainty in the nu-
merical simulations u,_, input parameters i, and data
u, and is given by

2

4,2 2 2
Uya) = Unum + u; + Up

input

(3-1-1)

Section 2 presented techniques for estimating u_
and Section 4 discusses techniques for estimating .
The focus of Section 3 is to estimate - the simula-
tion uncertainty due to uncertainty in simulation input
parameters.

Computational simulations usually contain experi-
mentally determined parameters that have uncertainty
associated with them. The model of the system may
range from an algebraic equation to a system of par-
tial differential equations. For a heat transfer example,
it might be desired to estimate the uncertainty in the
model temperature predictions, given the uncertainty
in thermal conductivity(s), volumetric heat capacity(s),
and convective heat transfer coefficient(s). For a fluid
flow example, it might be desired to estimate the uncer-
tainty in the drag coefficient, given uncertainty in fluid
properties.

Two different approaches for estimating u,  will
be presented. The two approaches depend on whether
one takes a local or global view of the uncertainty esti-
mation process. The local view is concerned with the
response of the system in a small (local) neighborhood
of the nominal parameter vector. In the literature, the
local view is known by a variety of names: sensitivity
coefficient method, perturbation method, mean value
method, first order method, and possibly others. The
global view is concerned with the response of the system
in a large (global) neighborhood of the nominal param-
eter vector. In the literature, the global view is known
by a variety of names: sampling method, Monte Carlo
method, and possibly others. In the sections that fol-
low, a description of the local and global uncertainty
estimation procedures will be presented along with an
example of each.

19

3-2 SENSITIVITY COEFFICIENT (LOCAL)
METHOD FOR PARAMETER UNCERTAINTY
PROPAGATION

Using a linear Taylor series expansion in parameter
space, the input uncertainty propagation equation for
a simulation result S with n uncorrelated random input
parameters is

n 2
Uit = E(% ux) (3-2-1)

where
S = simulation result
uy = corresponding standard uncertainty in input
parameter X,
X, = input parameter

For situations in which parameters are obtained from a
database, the assumption of uncorrelated errors is a good
one.

Simulation result S in eq. (3-2-1) could be a point
value of a simulation variable or an integral quantity
such as total drag or heat transfer. The partial deriva-
tives, 95/0X, are termed sensitivity coefficients of the
result S with respect to input parameter, X.. The term
inside the parentheses in eq. (3-2-1) is often written
as X, % MX—X where X, is the nominal parameter value.

This ap};roéch makes it convenient to specify the rela-
tive standard uncertainty u, /X, instead of the absolute

standard uncertainty uy. The remaining sensitivity co-
efficient X, % is termed a scaled sensitivity coefficient
and has the units of S. Equation (3-2-1) indicates the fol-
lowing two ingredients are required for the uncertainty
propagation equation:

(a) the sensitivity coefficient

(b) input parameter uncertainty

In the material that follows, a discussion of how
to obtain these two quantities in eq. (3-2-1) will be
presented.

3-2.1 Estimation of Input Parameter Uncertainty

Ideally, the input standard uncertainty values, Uy,
come from prior experiments. For example, suppose
one has a transient thermal model of a multi-material
system with convective boundary conditions. Labora-
tory scale experiments would have been performed
to determine the thermal conductivity and volumetric
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heat capacity of each of the materials. If property
measurements are performed, the techniques of Section
4 should be used to estimate the experimental uncer-
tainty. A more likely scenario is that one will use “da-
tabase (handbook) property values” and may have to
resort to expert opinion for the uncertainty in property
values. Experimentally determined correlations for the
convective heat transfer coefficient may be used. Again,
it is assumed that the experimenter reported the experi-
mental uncertainty; if not, expert opinion will have to
be used for the uncertainty.

3-2.2 Local Techniques for Computing Sensitivity

In the simple case of an algebraic model, sensitivity
coefficients 9S/9X; may be computed analytically. How-
ever, a more likely scenario is that the model is a com-
plex numerical simulation for which a finite difference
differentiation is the most practical approach. The term
“finite difference” as used here refers to the parameter
space and not the finite difference in space/time discreti-
zation algorithm for numerically solving partial differ-
ential equations. The procedure is to run the simulation
with nominal values of the parameter vector X. A sec-
ond run is made with a perturbed value (X, + AX,) for
input parameter X.. A finite difference approximation in
parameter space is then used to compute the sensitivity

Coefficients coefficient from
Many techniques available for computing local sensi- 9S _
tivity coefficients (0S/0X;) include the following: 0X,
(a) finite difference (FD) in parameter space SX, X, X+ AX,.L, X )= S(X, X, X, X))
(b) analytical differentiation of analytical solutions AX
(c) complex step (CS) + O(AX) (3-2-3)

(d) software differentiation (e.g. ADIFOR/ADIC)

(e) sensitivity equation method (SEM)

(f) adjoint method

Of the sensitivity methods listed, all generally re-
quire access to source code with the exception of FD.
The access to source code requirement likely excludes
their use with commercial software. Consequently,

The above process is repeated for each input parame-
ter. If there are n parameters, then n + 1 runs of the simu-
lation code will be required to compute the 7 first-order
sensitivity coefficients. A second-order accurate finite
difference is

S
our focus will be on the finite difference (in parameter WX -
space) method, which will allow the code to be used '
in a “black box” approach. The remaining sensitivity ~ S(X, X,.., X+ AX,..., X ) —

methods are topics of current research and the reader
is referred to [1-3].

3-2.3 Computation of Sensitivity Coefficients by
Finite Differences

A measure of the sensitivity of the simulation result S
(z, t, X) to changes in a parameter X, is termed the sensi-
tivity coefficient and is defined as
aS(z, t, X)

e (3-2-2)

Sensitivity Coefficient =

where
t = time

X, = one element of X (the vector of all problem parameters)
z = position vector

In this section, it is implicit that the sensitivity coef-
ficient is evaluated at the nominal value of the param-
eter vector. The simulation result S could be temperature,
velocity, heat flux, shear stress, drag, heat transfer, etc.
For a single material heat transfer problem involving
thermal conductivity, volumetric specific heat, viscos-
ity, and emittance, the nominal parameter vector would
be X = {k pc, u &}. Many materials will be present for
industrial heat conduction or conjugate heat transfer
problems. In this case, the thermal properties of all the
materials present will be part of the parameter vector;
consequently, the parameter vector can contain tens to
hundreds of elements.

20

X, Xy X, — AX,,..., X))
28X,

+0(AX?)  (3-2+4)

If a second-order central difference is used, then the
number of simulations goes to 21 +1. The computational
load for the finite difference in parameter space method
scales linearly with the number of input parameters for
which uncertainty is considered. The primary difficulty
with the finite difference method is choosing an appropri-
ate perturbation size AX,. If AX_ is too large, the truncation
error in eqgs. (3-2-3) or (3-2-4) will be too large. If AX is too
small, machine round off becomes significant because of
subtractive cancellation in the numerator of egs. (3-2-3)
or (3-2-4). Finite difference sensitivity coefficients can be
problematic for incomplete nonlinear iteration; see ref-
erence [4] for a discussion of this issue. Some numerical
experimentation is recommended. An example problem
will help solidify some of the issues associated with the
finite difference (in parameter space) method.

3-2.4 Local Uncertainty Propagation Example

Consider a planar 1-D slab exposed to a constant
heat flux () on one face, adiabatic on the other face,
and uniform initial temperature (T,). The analytical
solution for the temperature field T(zt) is given in
reference [5] as
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T-T
¢="L/k ~
g—ng%—%—k%(%)z—% E%exp(—nzwzg—ﬁ)cos(nw%)
(3-2-5)
where

k = thermal conductivity

L = slab thickness

g = heat flux

z = distance from the heated surface
a (=k / pcp) = thermal diffusivity

The sensitivity of the temperature field to the thermal
conductivity can be computed by analytically differenti-
ating eq. (3-2-5) with respect to k, resulting in

Note that eq. (3-2-6) is the scaled sensitivity coefficient for
the thermal conductivity k and has the units of temperature.

While analytical techniques can be used for this
example problem, numerical techniques will likely have
to be used for most practical problems. A significant use
for analytical differentiation is to provide verification
problems for other techniques for computing sensitivity
coefficients. Even if analytical sensitivity coefficients are
available, finite difference methods are often used to ver-
ify the correct implementation of analytical expressions.

This example problem was solved numerically using
a second order in space finite difference method and a
first-order fully implicit time integrator. The sensitivity
coefficient was then calculated using the first-order finite
difference in parameter space given by eq. (3-2-3). The
example problem parameters, which are representative

aT _ %( 9 _ ) . : :
k Kk Qg b (3-2-6) of a stainless steel, are as follows:
Wg‘f;e } g=4x10°Wm?2 k=10Wm'K', L=00lm
99 ot _ at z LN
“aa_ﬁ 1-1—2’12:1 exp( n2ar? Lz)cosnwL] (327) p=8000kgm*3,cp:500]kg*1 K—llTi:300K
t=20s at/I1* =05 aAt/Az2 =25 (3-2-8)
Fig. 3-2-1 Relative Error in Finite Difference Computation of kdT/dk Using a Backwards Difference
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GENERAL NOTE: Numerical discretization algorithm was second order spatial finite difference with a first order implicit
time integrator and the space/time grid refinement maintained aAt/Az*> = 2.5.
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The relative error in this numerical solution for the
scaled sensitivity coefficient kdT/ok was computed
with the analytical solution from eq. (3-2-6) taken as the
exact answer. The computational domain was spatially
discretized into uniformly spaced nodes. Figure 3-2-1
presents the computational results for the error in
thermal conductivity sensitivity coefficient for grids
of 11, 21, and 41 nodes. During the space/time grid
refinement, aAt/Az*>was kept fixed; if Az was reduced
by a factor of 2, then At was reduced by a factor of 4.
For a given spatial discretization (number of nodes or
elements), the results can be divided into approximate
regimes in which different effects dominate the relative
error in the sensitivity coefficient:

parameter discretization Ak/k > 107

space/time

discretization 10° < Akk < 1073

subtractive cancellation Ak/k < 10° (3-2-9)

The above boundaries were determined using double
precision arithmetic on a 32 bit computer and should be

viewed as fuzzy. If either the precision or word length
is changed, these boundaries are likely to change. For
Ak/k > 1073, the parameter discretization errors dominate.
For the relatively flat portion of the error curve in
Fig. 3-2-1, the space/time discretization dominates. In
this region, the results are relatively independent of
Ak/k; this is the region in which one wants to be operating.
For Ak/k < 107°, subtractive cancellation dominates and the
errors can actually increase as Ak/k is made smaller.

The range of Ak/k for which the error in kdT/ok reaches
a stable minimum depends on the number of nodes. This
range is broader for a coarse grid than for a fine grid.
Hopefully this example will provide some impetus to
perform numerical experiments when using the finite
difference method in parameter space.

If the second order finite difference (in parameter space)
given by eq. (3-2-4) is used, then similar results will be
obtained with the exception that the results will follow a
second order reference line instead of a first order line. The
decision of first order versus second order will likely be
made based on whether the computational budget can af-
ford 2n +1 simulations as opposed to # +1 simulations.

Fig.3-2-2 Estimated Uncertainty in Model Temperature Due to Uncertainty in g, k, and pc,

700|||||||||||

600
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o
o

Temperature, K
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GENERAL NOTE: All relative standard uncertainties were 0.05. The mean value method, eq. (3-2-1), was used.
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Using eq. (3-2-1), the uncertainty in the computed
temperature due to input parameter uncertainty was
computed for the above constant heat flux example. The
parameter vector for this example is

X ={qkpc,)

The relative standard uncertainty values were all taken
tobe i, /X, = 0.05. The property values were those given
in eq. (3-2-8). The nominal temperature response and the
corresponding uncertainty is given in Fig. 3-2-2. From
the (estimated) input parameter uncertainty, the stan-
dard uncertainty in the front face temperature may be as
much as +20 K. This =20 K range characterizes standard
uncertainty of the model output due to uncertainty in the
model input parameters.

(3-2-10)

3-3 SAMPLING (GLOBAL) METHODS FOR
PARAMETER UNCERTAINTY PROPAGATION

* The sensitivity coefficient method presented in the
- preceding section has been termed local sensitivity

and uncertainty propagation because the function
evaluations are in a small (local) neighborhood of the
mean parameter value. This approach will not capture
highly nonlinear behavior in the parameter space; sam-
pling based methods (Monte Carlo) will address this
deficiency.

The most reliable sampling technique for uncertainty
analysis is to sample the parameter space using the
full Monte Carlo method. This technique requires
the distribution functions to represent the uncertain-
ties in each parameter. A representative probability
distribution function for the thermal conductivity is
shown in Fig. 3-3-1; the mean and standard deviation
of the distribution of are 10 W/m-K and 0.5 W/m-K,
respectively. A random sample is drawn from each pa-
rameter’s distribution function, and standard statistical
techniques are used to compute the mean and variance
of the simulations. If parameters are correlated, joint
probability distributions are required; in this case, sam-
pling methods should properly account for correlation
between input parameters.

Fig. 3-3-1 Representative Probability Distribution Function for Thermal Conductivity
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~
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GENERAL NOTE: The mean and standard uncertainty are 10 W/m-K and o.5 W/m-K, respectively.
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The term “function evaluation” is applied to running
the simulation for one value of the parameter vector. The
number of function evaluations required for statistical
convergence (results independent of number of function
evaluations) may lie in the range of tens to thousands,
depending on the degree of convergence required. The
full Monte Carlo approach is cpu intensive. An alterna-
tive to the full Monte Carlo method is the latin hypercube
sampling (LHS) method presented in reference [6]. In the
LHS method, the cumulative probability distribution of
a given variable is divided into 7, (=n +1, generally
when sensitivity is desired) bands of equal probability.
Within each band, a random sample is drawn from the
probability distribution of the band. This process is re-
peated for each of the n, model parameters (or variables)
such as thermal conductivity, heat capacity, volumetric
source, etc. The matrix of 1, X n, values is represented
in Table 3-3-1. The columns in Table 3-3-1 represent the
LHS samples for a given variable while the rows repre-
sent the model parameter vector for a given probability
band. To ensure full coverage, the model parameters are
combined in a random fashion in a process described by
references [7] and [8] as follows: “The n, . values thus
obtained for X, are paired at random and without re-
placement with the n . values obtained for X,. These
1, ,,; pairs are combined in a random manner without re-
placement with the n, . values of X, to form 7, triples.
This process is continued until a set of 1 s n -tuples is
formed.” The above methodology has been documented
in references [9] and [10] and is implemented in reference
[11]. Section 1 of reference [10] contains a very readable
description of LHS. The LHS method will capture non-
linear behavior over the sampled parameter space pro-
vided the number of samples is adequate for statistical
convergence, and the distribution functions are known
with sufficient accuracy.

Once the simulation has been run for the n . param-
eter vectors, standard statistical techniques can be used
to process the results. Estimates of the expected value
(mean) and variance of response S are given by

nVHS

S=L>s (3-3-1)
LHS ;=1
Wy = s 2, (8, = 5 (3-3-2)

Table 3-3-1 Matrix Representation of Number of

LHS Samples (n,,) and Number of Parameters (np)

{ Probability Band\Parameters » X, X, e Xy

X, Xo e Xy

2 X, Xy e Xy
nLHS XnLHS1 XnLHSZ o XnLHSnp

Table 3-3-2 LHS Samples for the Three Parameters

g, k,and C
Sample g, W/m? k, W/m-K pc, = G, )/m3-K
1 378378 9.6984 3828080
2 407452 9.4573 4271520
3 438268 9.8618 4092520
4 368497 10.5484 4196800
5 399413 10.3684 4021160
6 386260 9.8795 3948668
7 403336 8.8858 3898340
8 391985 9.9936 3850160
9 412212 11.1242 4138320
10 417844 10.2519 3634980

GENERAL NOTE: The parent distributions were log-normal
with relative standard uncertainty of 0.05.

If the mean response and its uncertainty are the only
things of interest, then the computational process is
complete. From the LHS results, the distribution function
of S can be estimated. Since the distribution function of
the input variables is often assumed, the sensitivity of
uiipm to this assumption can be explored.

With sampling-based methods, there may be some
question if the number of samples was adequate. One
way of answering this question is to perform repli-
cates. With the LHS procedure, this is accomplished
by starting the random number generator with a
different seed. The entire analysis is then repeated
and the results are compared for the different repli-
cates. The replicates can be processed individually or
as a group.

The above LHS methodology has been applied to the
constant heat flux problem used throughout this sec-
tion. Ten LHS runs were made with the finite differ-
ence numerical code; the model contained 11 equally
spaced nodes. The three variables {g k pcp} were as-
sumed to have independent log-normal distributions,
each with a relative standard uncertainty of 0.05; the
corresponding LHS parameter vectors are given in
Table 3-3-2. Equations (3-3-1) and (3-3-2) were used
to compute the average and standard deviation of
the nodal temperatures; the results for z/L = 0 and 1
are shown in Fig. 3-3-2. For comparison purposes, the
sensitivity coefficient (mean value) results are also
presented. The two methods are in agreement for
z/L = 1 but there is some disagreement for z/L = 0.
Since both the LHS and mean value methods are ap-
proximate, further investigation is required to ascertain
which method is the most accurate for this problem.
The mean value method assumes a linear dependence
in the parameters model; for this example, the model
is nonlinear in k and pc . The LHS method is a small
sample approximation to the full Monte Carlo method;
an adequate number of samples for statistical conver-
gence is required. Conclusions drawn as to the “best”
method for a particular problem may not be valid for
all problems.
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Fig. 3-3-2 Standard Deviation in Temperature at z/L = 0 and 1 for Constant
Heat Flux Example Using 10 LHS Runs and Mean Value Method (With u,/X = 0.05)
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GENERAL NOTE: The runs were made with finite difference (11 nodes) numerical code.

3-4 IMPORTANCE FACTORS

Importance factors are quantities that allow one to
assess the relative importance of the input parameters
on the model uncertainty u, . While importance fac-
tors are not necessary for the formal validation process,
they are extremely important in that they help the ex-
perimentalist/analyst in deciding how to best spend
resources if it is desired to reduce u, . Nonmanda-
tory Appendix B presents techniques for computing
importance factors for both sensitivity coefficient and
sampling methods.

3-5 SPECIAL CONSIDERATIONS

All the calculations presented in this section were
performed on a 32 bit computer using double precision
arithmetic. Computer precision will have an impact
on how small one can make the finite difference step
size without encountering subtractive cancellation
problems.

25

For those problems with a large ( >> 10) number of
parameters, it is recommended that expert opinion be
used to reduce the number of parameters for which
sensitivity coefficients are computed.

In managing the large number of simulations that must
be performed in a computational uncertainty analysis,
some kind of scripting language is very helpful. Some
software exists that was designed specifically to aid this
process; in the literature, this is termed “putting a wrap-
per around the analysis code” [11].

The input parameters (uinpm) uncertainty is treated as
independent of the numerical uncertainty (u_,_). This is
a good assumption for small parameter perturbations
and finite difference sensitivity coefficients. One can
demonstrate that grid errors approximately cancel when
computing finite difference sensitivity coefficients. For
sampling methods, u, , could have dependence on u,
for the case of using a coarse grid for the individual sam-
ples. To avoid this dependency, it is recommended that
u, . becomputed on the finest grid used to estimate u__
if both o and u  are comparable in size. For those
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problems in which u, _<<u, . then the calculations for
U, can be computed on a coarser grid.

If the parameter variation causes a movement from
one flow regime to another, then the methods presented
here for computing u,  will not work. An example is the
movement from laminar to turbulent flow or vice versa.
This effect is less likely to happen with small perturba-
tion methods than with sampling methods.

It is reasonable to expect a certain amount of subjectiv-
ity in estimating 1, (and its associated distribution func-
tion for the LHS).

3-6 FINAL COMMENT ON PARAMETER
UNCERTAINTY

Atthe conclusion of Section 3, one will have determined
the contribution of each parameter to u, . At this time,
it is appropriate to compare u, to S and ask if u,  is
larger than is programmaticallpy acceptable. This is an
important question to ask, independent of the valida-
tion process. If the answer to the above question is yes,
then the individual contributors to u,  must be stud-
ied to determine which parameter uncertainties should
be reduced. Further work may be required to reduce the
uncertainties in the dominant parameters, which in turn
will reduce Uy If the answer is no, then one can pro-
ceed with the remainder of the validation process given
in Sections 4 through 7.
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Section 4
Uncertainty of an Experimental Result

4-1 OVERVIEW

This Section presents the basic concepts from
experimental uncertainty analysis that are used in the de-
termination of the uncertainty of the experimental result,
u,, in eq. (1-5-10). The ASME standard [1] on this subject,
PTC 19.1-2005, Test Uncertainty, is considered to be a com-
panion document for V&V 20. This Section provides an
overview of the basic methodology in PTC 19.1.

The validation process is dependent upon having an
appropriate experimental result that has a quantified un-
certainty estimate, 1. In addition, the experiment will
provide many of the simulation inputs and their associ-
ated uncertainties. It is critical for the modeler and the
experimentalist to work together in the design of the
validation experiment. The experiment will be the reality
of interest that the modeler is trying to simulate. Prelimi-
nary simulation results can help in the design of the ex-
periment and in the proper specification and placement
of instrumentation.

4-2 EXPERIMENTAL UNCERTAINTY ANALYSIS

The accepted standards for experimental uncertainty
analysis are references [1] and [2]. The process used in
experimental uncertainty analysis is to calculate the un-
certainties of individual measured variables and then to
use these to estimate the uncertainty of the result(s) de-
termined from these variables. For a measured variable
X, the total error is caused by multiple error sources. The
sum of all of these errors for a measurement is the differ-
ence between the value of the measurement determined
in the experiment and the true value of the measured
variable. In experimental programs, corrections to the
measurements are made for those errors that are known,
as in the calibration process. For those errors where the
magnitude and sign are unknown, uncertainty estimates
are made to represent the dispersion of possible values
for the errors. Both references [1] and [2] use the standard
deviation for each error source to calculate the uncer-
tainty in the measured variable. This standard deviation
quantity is called the standard uncertainty u.

In reference [2], these uncertainties are grouped by
the method used to evaluate them. Those that are cal-
culated by statistical means are classified as Type A and
those that are estimated by other means are classified
as Type B. Reference [1] uses this classification but also
includes a grouping of the uncertainties by their effect

27

on the measured variable. Those uncertainties from error
sources that contribute to the variability of the measure-
ment are classified as random and those uncertainties
from error sources that remain fixed during the measure-
ment process are classified as systematic. The discussion
below uses the random and systematic classifications to
discuss the uncertainty of a measurement and the uncer-
tainty of the test result.

4-2.1 Uncertainty of a Measurement

The systematic standard uncertainty of the measure-
ment of a variable is obtained from the square root of
the sum of the squares of the systematic standard uncer-
tainties for all independent error sources. For each sys-
tematic error source, the experimenter must estimate a
systematic standard uncertainty, b,. Systematic standard
uncertainties are estimated from previous experience,
calibration data, analytical models, and the application
of sound engineering judgment [3]. The systematic stan-
dard uncertainty for variable X is then

b= \bZ + b7 +...+ b} (4-2-1)

As an example, consider a thermocouple that has been
calibrated against a standard with a systematic standard
uncertainty of 0.10°C. When the calibration correction is
applied, the fixed error of the thermocouple is replaced by
the calibration uncertainty and the systematic standard
uncertainty of the calibration curve — for this example
taken to be 0.05°C. If the thermocouple is then used to
measure the mean temperature of a flow field, an addi-
tional uncertainty might need to be applied to account
for how well the thermocouple measurement actually
represents the mean temperature. If this conceptual un-
certainty (estimated by taking multiple measurements or
by analytical modeling) were 0.20°C, then the systematic
standard uncertainty for the thermocouple measurement
would be

b, = (0.10°C)* + (0.05°C)? + (0.20°C)> = 0.23°C  (4-2-2)

Estimates of systematic uncertainties are usually made
at some confidence level rather than at the standard de-
viation level. Typically, these systematic uncertainty esti-
mates are representative of the 95% limits of the possible
values of the systematic error. To obtain the systematic
standard uncertainty, a distribution is assumed for this
95% estimate (i.e. normal, rectangular, triangular), and
the estimate is divided by the appropriate distribution
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factor (2 for normal, 1.65 for rectangular, etc.) to convert
the 95% estimate to a standard deviation [1].

An estimate of the range of random error for mea-
surements of a variable X, is the sample standard de-
viation, s, also called the random standard uncertainty.
Unlike the systematic error, the random error varies
from measurement to measurement. To reflect the en-
tire range of possible measured values of a variable, the
measurements used to calculate the random standard
uncertainty must be taken over the time frame and con-
ditions that cover the variations in the variable. For ex-
ample, taking multiple samples of data as a function
of time while holding all other conditions constant will
identify the random variation associated with the mea-
surement system and the unsteadiness of the test condi-
tion. If the random standard uncertainty of the variable
being measured is also expected to be representative of
other possible variations in the measurement (repeat-
ability of test conditions for example), then these ad-
ditional error sources will have to be varied while the
multiple data samples are taken to determine the stan-
dard uncertainty. If repeatability of test conditions is not
represented in the experiment, then this effect will have
to be estimated as an additional systematic standard
uncertainty.

4-2.2 Uncertainty of a Result

Consider an experimental result that is determined
from | measured variables as

r=rX, Xy,..., X,..., X))

] (4-2-3)

The standard uncertainty of the result, u,is found as
u =\b + s (4-2-4)

where b, is the systematic standard uncertainty of the re-
sult

iﬂ 2+2§i8r8r

i=1 aX; i=1  k=i+1 (9_)(1 a_>(k
and s, is the random standard uncertainty of the result

/ J-1 /
S (Esfe2S S p

-~ S.
k
i=1 i=1 k=i+1 aX; an !

b’ b, b, (4-2-5)

2 _
s =

(4-2-6)

where
b, = systematic standard uncertainties of the measurements
s, = random standard uncertainties of the measurements
The terms b, and s, in egs. (4-2-5) and (4-2-6) are
the covariance of the systematic and random stan-
dard uncertainties, respectively. When the elemental
systematic errors for two separately measured vari-
ables are related (e.g., when the transducers used to
measure different variables are each calibrated against
the same standard), the systematic errors are said to
be correlated and the covariance of the systematic
errors is nonzero. The significance of correlated sys-
tematic errors is that they can have the effect of either
decreasing or increasing the uncertainty in the result.
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The covariance term, b,, is determined by summing
the products of the elemental systematic standard un-
certainties for variables i and k that arise from the same
source [3].

Usually the random standard uncertainties are con-
sidered to be independent so that s, is taken as zero.
However, there can be situations where the measured
variables, X, in eq. (4-2-3) can be affected by a common,
time-varying, nonrandom error source, such as a drift in
inlet flow rate to a test configuration. In this case, calcu-
lating the random standard uncertainties for each vari-
able and calculating s_from eq. (4-2-6) with s, taken as
zero can lead to an incorrect determination of the ran-
dom standard uncertainty of the result. These cases of
correlated random errors can easily be handled [4] by
calculating the result from eq. (4-2-3) each time the Xs
are measured and then directly calculating the standard
deviation, s, of the set of results and using that s,in eq.
(4-2-4) rather than using eq. (4-2-6).

Monte Carlo methods can be used to find the standard
uncertainty of the result [5] instead of the propagation
approach given by egs. (4-2-4) through (4-2-6). The Monte
Carlo method is illustrated in Sections 3, 5, and 7.

4-3 UNCERTAINTY OF VALIDATION EXPERIMENT

The experimental uncertainty, u,, used in the valida-
tion process is the u_obtained above,

Up,=u,

(4-3-1)

Even though the experiment will have both systematic
and random errors and associated standard uncertain-
ties, the uncertainty of the experimental result for the
validation process will be fossilized as a systematic stan-
dard uncertainty [3]. Thus for the purposes of the valida-
tion process, the experimental result has a single value, a
fixed (but unknown) error, and only a systematic compo-
nent of uncertainty.

4-4 SUMMARY

This section has presented the basic concepts necessary
to determine the uncertainty of the experimental result.
As noted at the beginning of this section, the ASME stan-
dard [1] on this subject, PTC 19.1-2005, Test Uncertainty,
is considered to be a companion document for V&V 20.
PTC 19.1-2005 provides detailed examples of the applica-
tion of uncertainty analysis to the determination of the
uncertainty of test results and gives practical consider-
ations for uncertainty analysis in general.
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Section 5
Evaluation of Validation Uncertainty

5-1 OVERVIEW

This Section describes how the validation uncertainty
u,, is determined once estimates of u__ and the uncer-
tamty contributors to u,__ and u, have been made as dis-
cussed in previous sections.

Discussed in this Section are two approaches for deter-
mining u_, that differ in the manner of propagation with
which estlmates foru,_  and u, are obtained. The first is
use of a sensitivity COG&ICI@I’I’( (local) method, and the sec-
ond is use of a Monte Carlo (sampling, global) method.
Both approaches are illustrated for four example cases
that cover a wide range of V&V applications.

The first three cases considered are for the finned-tube
heat transfer example (discussed in Section 1 and in
Mandatory Appendix I and shown schematically in Fig.
1-4-1) in which the following occur.

5-1.1 Case 1

The validation variable T is directly measured.
5-1.2 Case 2

The validation variable g is a result defined by a data
reduction equation that combines variables measured
in the experiment (and no measured variables share the
same error sources).

5-1.3 Case 3

The validation variable g is a result defined by a data

reductlon equation that combines variables measured in

the experiment and the measurements of T, and T share
identical error sources.

In these cases, specification of the validation condition
(set point) requires experimental determination of the
value of Reynolds number (4pQ/mud, ), and since the sim-
ulation is performed for actual experimental conditions,
the values of the variables from the experiment will be
inputs to the simulation. The errors in these inputs are
assumed to be uncorrelated for all cases, with the excep-
tion of T, and T for Case 3.

The fourth case considers a combustion flow with the
validation variable being duct wall heat flux g at a given
location (Fig. 5-1 -1). The experimental g is inferred from
temperature-time measurements at the outside combus-
tor duct wall using a data reduction equation that is itself
amodel. The predicted g is from a simulation using a tur-
bulent chemically reacting flow code to model the flow
through the duct.

5-2 ESTIMATING v, WHEN THE EXPERIMENTAL
VALUE, D, OF THE VALIDATION VARIABLE IS
DIRECTLY MEASURED (CASE 1)

This case is one in which the experimental value D of the
validation variable is directly measured. A key feature of
such cases is that D and S have no shared variables, which
leads to a straightforward evaluation of u,  and u,,. The

Fig. 5-1-1 Schematic for Combustion Gas Flow Through a Duct
With Wall Heat Flux Being the Validation Variable (Case 4)
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analysis is more complex in cases for which D and S have
shared variables as shown in subsection 5-3.

For the finned-tube heat transfer experiment shown in
Fig. 1-4-1, consider a case in which the validation vari-
able is defined as the directly measured downstream
bulk fluid temperature T . Then

S=T, (5-2-1)
D=T, (5-2-2)
E=S-D=T,-T, (5-2-3)

The functional dependence of the simulation result is
represented by
Cp by by by b,

=T,(T, T, Q p 1, Cp iy
kkdd Law w

My Y B

T

0,S
| ) (5-2-4)
;Ewhere the simulation models the conditions of the ex-
“periment, so that values from the experiment are used as
“inputs to the simulation. The expression for the compari-
“son error is then

o Cplty Iy I, B K,
T

E=T(T,T,Qp
d,d, ,aw wf) "D

k (5-2-5)

v

5-2.1 Sensitivity Coefficient Approach (Case 1)

As discussed in subsection 1-5, since the validation
variable T is directly measured, the assumption of effec-
tively independent errors §,  and §, is reasonable. The
expression for u_ is from eq. (1-5-10)

2

— 2
Ugal = Unum + M + l’leD

input

with u,  given by eq. (3-2-1) with its correlation terms
equal to zero

2 _ 0,S
uir\put - E
i=1

2
oX. “X.)
which for this particular case yields

u (aT

aT \l2 aT . \? aT aT .\?
2 _ 0,S 2 0,S 2 0,S 2
s = (o (52 .+ (] - G
aT . )? aoT aT .\? aT .\?
0,S 2 0,S 2 0,S 2 0,S 2
i) wele] v
T \12 {BT \12 aT \? aT \?
+{ oS |2 4 oS | 2 4 o, 2 4 o 2
\an, | ™ Uam, ) 7 ok ) M T ek )
aT . \? aT .\? aT )2 (GT )2
0,8 2 0,S 2 0,S 2 0,S 2
* adl) "\, ”dz“L( aL )t \aa )
aT ;|2 T\
Sl e uwf+ 7w, Uy (5-2-6)

The derivatives in eq. (5-2-6) are evaluated using the
procedures of Section 3. The standard uncertainty, u, , is
determined using the techniques discussed in Sectlon 4.
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The sensitivity coefficient method requires knowledge
about only the nominal values of the input parameters
and their associated standard uncertainties. Knowledge
about the form of the distributions is not required.

Uncertainty exists in the validation condition set point
due to uncertainties in the parameters defining the set
point. Applying the sensitivity coefficient approach to
eq. (1-4-2) leads to

2 :(a Re)? z+(6 Re)? 2 +(a Re)?
ke {ap ) 90 ) "™ an)

The derivatives in eq. (5-2-7) can be evaluated analyti-
cally due to the simple form of Re.

A graphical summary of the procedures used to evalu-
ate u_, using the sensitivity coefficient propagation ap-
proach is illustrated in Fig. 5-2-1. The procedures defined
in previous sections are used to estimate all standard un-
certainties and the partial derivatives.

2+(a Re\* 2 (527)

2
od, | "

5-2.2 Monte Carlo Approach (Case 1)

Figure 5-2-2 illustrates the Monte Carlo approach
for this case. In contrast to the sensitivity coefficient
approach, the Monte Carlo method requires that prob-
ability distributions be assumed for the errors in the
input parameters. The standard uncertainties, u, are
generally taken to be the standard deviations of the
assumed distributions. For a given “run” i of the sim-
ulation, a random sample is taken from each of these
distributions and the simulation result, S, experi-
mental result, D, validation comparison error, E, and
validation point, Re,, are calculated. This process is re-
peated N times, and the resulting means and standard
deviations of the N values of E, and Re, evaluated.

Note that since each S, includes (essentially) the same
o the effect of _ is not observed in the variability of
the distribution of the N values of S, or E. The effect of
the numerical uncertainty is accounted for when u__ is
included in the calculation of u_.

The number of samples N can be reduced using the
techniques discussed in Section 3.

5-3 ESTIMATING v, WHEN THE EXPERIMENTAL
VALUE, D, OF THE VALIDATION VARIABLE
IS DETERMINED FROM A DATA REDUCTION
EQUATION (CASES 2 AND 3)

When the validation variable is not directly measured but
is determined from a data reduction equation using other
measured variables, the estimation of Uy and u,, (and sub-
sequently u ) becomes more complex. Example Cases 2
and 3 illustrate the application of the validation approach
in such circumstances. The most general form of the sensi-
tivity coefficient propagation equation as it applies to these
cases is presented first, with the form for each of the two
specific cases then presented in the subsections following.
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Fig. 5-2-2 Monte Carlo Approach for Estimating u  When the Validation Variable (T)
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URe = the standard deviation
of the N'samples Re;
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Consider the general situation in which the validation
variable is a result determined from a data reduction
equation containing j variables x, and some of the mea-
sured variables may share identical error sources. The
equation for the comparison error is then [recalling egs.
(1-5-4) and (1-5-6)]

E=S(x1,x2,...x)—
=38 +8 +68 —&

model num input D

(x,xz,...x].)

(5-3-1)
In this instance, 8, and §, cannot reasonably be as-
sumed to be independent since S and D share a depen-
dence on the same measured variables. Application of
the sensitivity coefficient propagation approach to obtain
an expression for i yields

is not directly measured — it is an experimental result
determined from measured variables and others whose
values are found from reference sources (the properties,
for example). Second, since eq. (5-3-5) is a 1-D statement
of conservation of energy with T, and T, taken as the mean
inlet and outlet temperatures, there is no modeling error
for g, incurred when it is used as contrasted with the situ-
ation to be discussed in Case 4. However, there will likely
be spatial nonuniformity uncertainties for T, ) and T, , to
account for how well they represent the mean tempera-
tures. Since there are no error sources shared by different
variables, all covariance terms in eq. (5-3-2) are zero. In
this example, it is assumed that the simulation predicts T
and calculates q using the input values of p, Q, C,, and T
The comparison error expression is

ut = ﬁ_@2u2+ ﬁ_QZuZ_F... E=S-D=4g,—9q, (5-3-6)
val ax, ax, s \ox ox %
where
“|fie) = 6] +2[(ﬁ)—(@)]
0x; 0x; ¥j X 0x, qs = pQC, [T, — T (T, T, Q p mC,
X [(ﬁ — (@ ]M + ..+ unum (5_3_2) hl’ hz’ h h o kf’ kf, d]’ dz, L a, w wf)] (5 -3- 7)
ax. ax,) |
and
where there is a covariance term containing a u,  factor for

each pair of x variables that share identical error sources [1].
There is no explicit expression for u”, _ , as its components
combine implicitly with components of 1> . Equation (5-3-2)
can be expressed in a form analogous to eq. (1-5-10) as

X, X

= pQC(T,, — T,,) (5-3-8)

5-3.1.1 Sensitivity Coefficient Approach (Case 2).
For this case u_ is given by egs. (5-3-3) and (5-3-4) where

ufal Unum + umput+D (5_3_3) uinpuHD iS expressed as
where aq aq,\1* 9q I,\ |
wieen = |(55) = (5] 6+ ) ~ ()] e
2 2
e B B R -
! : oT) | M
+[([2S) - (DT 2 + 2[(25) - (22 f
ax, ax, ax,, ax 9q,\? w2 a4 6q5 2, a\?
j i L + e u, + |== u,
X 9S\ _ (9D U +.--+2 dS\_(adD aTx ! oh 2
X ax X, ax,_, ax,_, 9g.\? 0q,\? aq aq
j j + (=18} 42+ S| 2 + 18 uz + s\ 4,2
< [(9S)\ _ (2D\1,, (5-3-4) on (ah) e ok, (ak)
axj ax/.

-1

Methods for evaluating the sensitivity coefficients of
the simulation predicted value with respect to the vari-
ables (9S/dx,) are discussed in Section 3. The estimate of
u_ is made using the techniques in Section 2.

nu

5-3.1 No Measured Variables Share Identical Error
Sources (Case 2)

Again, using the finned-tube heat transfer experiment
as an example, consider now a case in which the valida-
tion variable of interest is g, the rate of heat transfer given
by the 1-D averaged conservation of energy equation as

q=pRC,(T,— T) (5-3-5)

and no measurements share any error sources. It is impor-
tant to note several points. First, the rate of heat transfer

33

9\ o, (995 (a%) 3115) 2
+ (ﬁ) l/ld1 + (ﬁ udz + E ML + (W u,

9qs)* 95\ 2 4 [P\ 2
+ (a_wf) uwf+ (aw U, + (BT(,D) ur,, (5-3-9)
Equation (5-2-7) is used to evaluate the uncertainty in

the set point, Re. Figure 5-3-1 illustrates the application
of the sensitivity equation approach to this case.

5-3.1.2 Monte Carlo Approach (Case 2). The Monte
Carlo approach is illustrated in Fig. 5-3-2. Probability dis-
tributions for the errors in the experimentally measured
variables and the errors in the other input parameters are
assumed; the standard uncertainties u are taken to be the
standard deviations of the assumed distributions, and
the variance of the sample of N values of E, is taken as
the estimate of uiﬁme.
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Fig. 5-3-1 Sensitivity Coefficient Propagation Approach for Estimating u,, When the Validation Variable Is
Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment (Case 2)
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Fig. 5-3-2 Monte Carlo Approach for Estimating u,,, When the Validation Variable Is Defined by a
Data Reduction Equation That Combines Variables Measured in the Experiment (Case 2)
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Fig. 5-3-3 Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation Variable Is
Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment
and Two Measured Variables Share an Identical Error Source (Case 3)

Data
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— 2 2
\f' = USnput + DF U hum

5-3.2 Measured Variables Share Identical Error
Sources (Case 3)

Now consider that the measured temperatures T, and
T share an identical error source (such as both tem-
perature transducers being calibrated against the same
standard and therefore, after making the calibration
corrections, leaving each transducer with the error of
the standard in common). The comparison error expres-
sions are as given in eqs. (5-3-6) through (5-3-8) in para.
5-3.1.

5-3.2.1 Sensitivity Coefficient Approach (Case 3).
For this case u_ is given by egs. (5-3-3) and (5-3-4) where

valuesofp, Q,..., T, p valuesof T;p, T..,. .., Wy valuesof p, Q, ..., d;
Estimate Estimate
Up,UQ,...,Uan Up,UQ,...,Ud1
Y Y Y
D=qp=pQCp(T;p- T, p) Simulation— S=qs JdRe dRe JRe
Y { dp 90 " ad,
9g9p  99p 99p dgs  dgs dgs
o 0Q " oar, p 90 " ow,
Y Y Y
A ;Y Y _ 4pQ que
uzinput+D uznum Re_ndﬂi
v

where the final term in the equation is the covariance
term that takes into account the fact that the measured
values of T, and T, share an error from the same source.
Since g does not depend on T, ,, that derivative in the
final term is zero.

Equation (5-2-7) is used to evaluate the uncertainty in
the set point, Re. Figure 5-3-3 illustrates the application
of the sensitivity coefficient propagation approach to this
example case.

5-3.2.2 Monte Carlo Approach (Case 3). In the
Monte Carlo approach, probability distributions for
the errors in the experimentally measured variables

Uypoutp 1S €Xpressed as : '
" 97\ 12 " ) and the errors in the other input parameters are as-
MiiputJrD = (_5) — (&)] ul + [(_5) — ( qD)] sumed; the standard uncertainties u are taken to be the
ap ap aQ 9Q standard deviations of the assumed distributions; and

9q5\ — (995\]* . - 95\ (99:\1* > the variance of the sample of N values of E. is taken
+ 2w+ | =2 - (=2 ] u P i
aC,) \aC,J| " aT, aT )| as the estimate of u% The procedure is shown
input+D* p
a9, \? 0qs) 5 (092 9.\ in Fig. 5-3-4. In this case the error from distr(8T,) is
+ (ﬁ) ur, + (@/”‘u + (ﬁ) i, + (W) U, from the shared identical systematic error source and
* 1 2 . .
00N L (04N . (00N . (00 , the same error ;S assigned to both (T, ) and (T, ) for a
+ T u,,f-i- 5 w, + W ukf+ 3 U, given iteration.
1l c t
9q\* >, (995 (5‘75) 2 (aqs)z 2
+(W) ui+ \5g) vt \Gr) v+ (Ga) w
04g.\? 0g.\? d
+ (i) gy + (—qs) g + ( qD) ut, _
awf awnf oT, °In general, only some elemental systematic error sources
aq aq aq aq will be the same for T,, and T, ,, and the other elemental sources
+2 (6_Ts) - (a—TD” (GTS ) - ( BTD) ., (5-3-10) will not be the same. Suich situations are discussed in detail in ref-
i i oD, ) ner erence [1].

3
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Fig. 5-3-4 Monte Carlo Propagation Approach for Estimating u

When the Validation Variable
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Is Defined by a Data Reduction Equation That Combines Variables Measured in the Experiment
and Two Measured Variables Share an Identical Error Source (Case 3)
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5-4 ESTIMATING v WHEN THE EXPERIMENTAL
VALUE, D, OF THE VALIDATION VARIABLE
IS DETERMINED FROM A DATA REDUCTION
EQUATION THAT ITSELF IS A MODEL (CASE 4)

Consider the case of combustion gases flowing through a
duct, with the validation variable of interest being the heat
flux g incident on a particular area of the duct wall. The situ-
ation is shown schematically in Fig. 5-1-1. The simulation
result g, is predicted using a code that models a turbulent
chemically reacting flow at the conditions of the experiment.
Inputs would be geometry, propellant and oxidizer flow
rates, etc. The chemical equilibrium code that calculates the
combustion gas properties might be considered to be a part
of the simulation model (similar to the common treatment of
turbulence models and their parameters in a CFD analysis)
or it might be considered to be part of the input parameters
with uncertainty contributions taken into account in (-

The experimental heat flux is determined by measuring
the temperature of the back wall (y = L) of the duct as a
function of time, t. The measured T(t) history is then used
in an inverse conduction data reduction model [2] to infer
the incident heat flux at y = 0. The data reduction model
might assume 1-D conduction, constant or variable wall
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properties, incident heat flux constant with time, adiabatic
wall aty = L, etc. In this approach, the experimental result,
q,,, now contains errors from categories analogous to those
in the simulation (i.e., the error due to assumptions and
approximations in the data reduction model is denoted
8 moae)s the error in the data reduction model output due
to the errors in the inputs (measured and from reference
sources) is denoted &, put? ; and the error due to the numeri-
cal solution of the data Teduction model is denoted 8 um

The validation comparison error in this case is given by

E = S - D = qs - qD = SS,model + 8S,input + 6S,num
- 6D,model - 5D,input - 6D/num (5_4_1)
If 3, 4q iSOt (Or cannotbe) estimated with an uncertainty,

then the two modeling errors are not distinguishable indi-
vidually and a total modeling error is given by

model,total = (6S,mndel - 6D,mndel)
= E - (8S,input + 5S,r\um - 6D,input - 6D,num) (5_4_2)
Now u_ is defined as the standard uncertainty corre-

sponding to the standard deviation of the parent population
of the combination of (& + 8 um — O = O

S, input D,input Dnum
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The functional relationships for g, and g, are given by

G5 = g%y Xy - - X)) (5-4-3)

where the j different x, are the inputs to the simulation
model, and

9o = dp(P ¢, kK, L, T, t) (5-4-4)

Realizing that the simulation is of the flow field and
the experimental data reduction model is of the duct
wall, the expressions for the results g, and g, do not con-
tain shared variables as in Cases 2 and 3.

5-4.1 Sensitivity Coefficient Approach (Case 4)
The sensitivity coefficient approach in this case yields
0q.\? aq.\?
2 _ S 2 S 2 2
Uy = (a—xl) MX] + ...+ (a—x]) ij + Us num

9q,\? 9q,\? 9q,\? ag.\?
+(ﬁ) u2+(&) u2+(ﬁ) uf+(ﬁ) uf

ap) * dc,] ok oL
an)Z 2 (an)z 2 2
+ (ﬁ Ur + T Uy + Up num (5'4:'5)
Defining
aq 2 aq 2
2 _ 2 0
uS,i.nput - (a_x?) un + ...+ (a—xj) ux]' (5_4_6)
and
ap) v (ae) o (Gl e ()
2 — D 2 D 2 YD 2 99p 5
Dinput = (ap) Uy + (6cp) ey * \Gk) T GL) ™

9%)2 2 (3%)2 2
+ (a—T Ur + 7 u, (5-4—7)
the expression for 1 becomes

ux%al = MSZ,ir\put + usz,num + ul%,input + ulg,num (5_4_8)

Figure 5-4-1 illustrates this case.

5-4.2 Monte Carlo Approach (Case 4)

As in the previous cases, probability distributions of
the errors in the experiment and the errors in the input
parameters are assumed, and the standard uncertainties,
u, are taken to be the standard deviations of the assumed
distributions. The validation uncertainty is determined
as shown in Fig. 5-4-2.

5-5 ASSUMPTIONS AND ISSUES

A summary of relevant assumptions and issues con-
cerning the two methods to propagate uncertainty
through the data reduction equations and simulations
and multipoint model validation follows.

5-5.1 Sensitivity Coefficient Propagation Approach

Assumptions and issues associated with the sensitiv-
ity coefficient propagation approach, as related to model
validation, are summarized below.

(1) While the sensitivity coefficient propagation
approach generally requires fewer evaluations of the
simulation model than the Monte Carlo approach, the

Fig. 5-4-1 Sensitivity Coefficient Propagation Approach for Estimating u,,, When the Validation
Variable Is Defined by a Data Reduction Equation That Itself Is a Model (Case 4)
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Fig. 5-4-2 Monte Carlo Propagation Approach for Estimating u

When the Validation Variable
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Is Defined by a Data Reduction Equation That Itself Is a Model (Case 4)

Data

Nominal (measured/tabulated)
valuesof p, ¢y, ..., t

Y

Simulation

Nominal (measured/tabulated)
values of xq, Xy, ..., X;

¢ :

Estimate parameters characterizing
distr(p), distr(c,), . . ., distr()

Estimate parameters characterizing
distr(x,), distr(x,), . .., distr(x;)

Y

!

r— >

Sample from distr(p), distr(c,), . . ., distr(t) | | Sample from distr(x;), distr(x,), . . ., distr(xj) - —

)

Data Reduction Model — (q;p);

D;=(q;p);

'

Simulation — (g;s);
S;=(q;s);

Estimate u?p, ,uy, Using nominal

values of p, cp, ...

u?p, input + u?s input = the variance
of the N'samples of E;
E = the mean of the N
samples of E;

Estimate uZg ,m using nominal

values of x7,X%5,..., X

J

~

Y

Y

2 — 2 2 2 2
USya =U D, numt U D, input+ u S, input+ u S, num

number of evaluations can be significant. For models
with a very large number of input parameters, some
effort may be needed to identify those parameters that
have a significant effect on the model predictions for the
conditions (set point) of the validation experiment. The
sensitivity propagation analysis can then be limited to
these parameters.

(b) The method, as presented, assumes that the mean
simulation model output, mean (S), and the uncertainty
of the model output due to the input parameters, u,
can be evaluated from the nominal values of the input
parameters, and from a first order sensitivity analy-
sis. These assumptions may not be appropriate if the
model is highly nonlinear in the input parameters, over
the parameter ranges associated with the standard un-
certainty of the parameters about the set point. Note
that validation experiments are often performed under
carefully controlled conditions, leading to smaller ranges
for the uncertainties in the input parameters than may
occur in the field.

(c) An advantage of the sensitivity coefficient propa-
gation method is it requires only that the nominal value
(or mean value) and standard uncertainty (standard

38

deviation) of the model input parameters and data
be characterized. The Monte Carlo approach requires
the full specification of the uncertainty distributions
unless one adopts the approach outlined in subpara.
(b) of para. 5-5.2.

(d) One cannot, without further assumption, charac-
terize the interval within which §__, , falls, to a fixed level
of probability. The method characterizes only E and u,
and not the distribution associated with the uncertainty
in(d, .+ 6.~ 6

input

5-5.2 Monte Carlo Propagation Approach

Assumptions and issues associated with the Monte
Carlo approach, as they relate to model validation, are
summarized below.

(a) The Monte Carlo approach requires that the
number of evaluations of the simulation model be suffi-
ciently large [3] such that the mean model prediction and
the standard uncertainty u,  can be resolved.

(b) The distributions of the important model param-
eters must be specified. If sufficient knowledge does not
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exist to specify any of these distributions, a range of distri-
butions and associated distributional parameters can be
utilized (normal, uniform, etc.) to evaluate the sensitivity
of the validation analysis to the distributional choices.

(c) While the number of simulation evaluations re-
quired by the Monte Carlo approach to adequately es-
timate mean (S) and u,  is at most a weak function
of the number of model parameters (not a function if
the random samples are from independent, identical
distributions [3]), one must specify the distributions of
the parameters used in the analysis. As in the case of the
uncertainty propagation method, some effort may be
needed to identify those parameters that have a signifi-
cant effect on the model predictions for the conditions
(set point) of the validation experiment, so that the dis-
tributions associated with those parameters that are not
important need not be characterized.

(d) The Monte Carlo simulations can be performed on
a coarser grid if it is established that u__ for that grid
is significantly smaller than u, . The use of a simula-
tion based on grid for which u_,_is on the order of u,_
oo Will significantly increase u, , leading to a situation
where a significant part of the estimated standard uncer-
tainty, u is due to limitations in the computation rather
than due to uncertainties in the validation experiment
(i.e., those that are due to uncertainties associated with
measurements and the parameters used in the simulation
of the experiment).

(e) The method provides an estimated distribution for
the uncertainty in . based on the uncertainty in (8,

model input

39

+ 8., — 6,). The distribution can be used to estimate the
interval in which the §__,, falls, with a given probability.
As the probability increases (say, from 95% to 99%), the
number of simulation evaluations required to resolve the
tails of the distribution increases.

5-5.3

The procedure documented here can be applied to
characterize model error for multiple set points. This
Standard, however, does not provide guidance on how
the results can be interpolated (or extrapolated) to other
set points. Several issues arise in interpolation. These
include the choice of the interpolation function and the
characterization of the statistics of the residuals (i.e., the
form of the distribution, correlation between residuals at
different set points, and the estimation of the distribu-
tional parameters). Such issues are beyond the scope of
this Standard.

Implications for Multipoint Validation
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Section 6
Interpretation of Validation Results

6-1 INTRODUCTION

Previous sections of this document have presented a
validation methodology based on determining the vali-
dation comparison error, E, and the validation uncer-
tainty, u_, and this Section discusses the interpretation of
the comparison of these metrics. Note that once a valida-
tion effort reaches the point where the simulation value,
S, and the experimental value, D, of a validation variable
have been determined, the sign and magnitude of E (= S
— D) are known.

The validation uncertainty u , is an estimate of the
standard deviation of the parent population of the com-
bination of all errors except the modeling error (5 +

mput — Op) I S and D. Techniques for estimation of the
uncertainty components u, i, o and u,, that combine
to give u_, have been discussed in Sectlons 2,3, and 4,
respectively. Evaluation of u_, from those uncertainty
components has been demonstrated in Section 5 for four
separate cases that represent practical validation scenar-
ios. For each of the cases, the contributions of 1,  and u,,
to u , are determined by propagation of the simulation
input standard uncertainties and the experimental stan-
dard uncertainties using two techniques: a sensitivity co-
efficient (local) approach and a Monte Carlo (sampling,
global) approach that requires specification of error dis-
tributions.

Recalling eq. (1-5-7)

0 =E + 6.

- (Snum input - 6D) (1_5_7)

model

and considering the definition of u_, it is evident that

(E=*u

val )

then characterizes an interval within which §__,

) e[E—u

. falls, or

wETu

model val ]

Thus, E is an estimate of §__, , and u_, is the standard
uncertainty of that estimate. The validation uncertainty
can thus be viewed as the standard uncertainty, Us v of

the estimate of §_ .

6-2 INTERPRETATION OF VALIDATION RESULTS
USING EAND u_, WITH NO ASSUMPTIONS
MADE ABOUT ERROR DISTRIBUTIONS

If one has only an estimate for the validation uncer-
tainty, u , and not an estimate of the probability dis-

tribution associated with ( T+ (‘Smput — SD), an interval
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within which the value of §__,, falls with a given prob-
ability cannot be estimated without further assumption.
One can make the following statements, however:

(a) If

lEl>>u (6-2-1)
then probably 6 . = E.
(b) If
lEl<u_ (6-2-2)
{hen probably 6_ . is of the same order as or less than
O T 8input ~ 9%)

From a practical standpoint, in the first case one has
information that can possibly be used to improve the
model (reduce the modeling error). In the second case,
however, the modeling error is within the “noise level”
imposed by the numerical, input, and experimental un-
certainties, and formulating model “improvements” is
more problematic.

6-3 INTERPRETATION OF VALIDATION RESULTS
USING EAND u_ WITH ASSUMPTIONS MADE

ABOUT ERROR DISTRIBUTIONS

To estimate an interval within which §__, falls with
a given degree of confidence, an assumption about the
probability distribution of the combination of all errors,
except the modeling error, must be made. This then al-
lows the choice of a coverage factor [1, 2] k such that

u, =ku (6-3-1)

where U, is called the expanded uncertainty and one can
say, for instance, that (E + U,,) then defines an interval
within which §__,  falls about 95 times out of 100 (i.e.,
with 95% confidence) when the coverage factor has been
chosen for a level of confidence of 95%.

6-3.1 Parent Error Distributions

To obtain a perspective on the order of magnitude of
k, consider the following three parent error distributions
used as examples in the ISO Guide [1]:

(a) a uniform (rectangular) distribution with equal
probability that 6 lies at any value between —A and +A,
so that o = A/V3.

(b) a triangular distribution symmetric about § = 0
with base from —A to +A, so that o = A/6.

(c) a Gaussian distribution with standard deviation o.
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6-3.2 Coverage Factor

Choose a coverage factor, k, such that (5, + 8, —6,)
certainly (or almost certainly) falls within *+ k(u__).

(a) If (5, + 6, —96,)isfrom the uniform distribution,
100% of the popuiation is covered for k = 1.73.

(b) If (5, + 6, . — 6, is from the triangular distribu-
tion, 100% of the population is covered for k = 2.45.

() If B, + 6, 0, is from the Gaussian distri-
bution, 95.5% of tf\e population is covered for k = 2.0,
99.7% for k = 3.0, 99.95% for k = 3.5, and 99.99% for
k= 4.0.

With these comparisons, one can conclude that, for
error distributions in the “family” of the three distribu-
tions considered, §_ , certainly (or almost certainly) falls
within the interval E = k(u ), where k is typically a num-

ber in the range of 2 to 3.
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In the case of the Monte Carlo approach, a direct
calculation of a coverage interval can be performed for
sufficiently large number of samples N using the distri-
bution of the N calculated values of E, if one has suffi-
cient confidence in the choices of the input distributions.
Alternatively, this distribution can also be used to evalu-
ate an equivalent k if the distribution is symmetric.
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Section 7
Examples

7-1 OVERVIEW

To demonstrate the validation approach in this
Standard, an example problem is presented. The example
applies the approaches described in this Standard to ad-
dress code verification, solution verification, uncertainty
in model input parameters, uncertainty in experimental
data, validation uncertainty, and interpretation of the
validation comparison. The example is based on validat-
ing a model for the heat transfer rate from a fin-tube heat
exchanger.

This Section is divided into two main subsections
covering the code verification example (subsection 7-2)
and validation example (subsection 7-3). The code veri-
fication example includes a description of the problem
(para. 7-2.1), presentation of a manufactured solution
(para. 7-2.2), and discussion of the results (para. 7-2.3).
The validation example includes an end-to-end dem-
onstration of the approach with paragraphs on the ex-
perimental data (para. 7-3.2), simulation (para. 7-3.3),
and validation comparison (para. 7-3.4); an additional
paragraph (para. 7-3.5) summarizes applying the valida-
tion approach to a second simulation model. In the ex-
perimental data section, experimental uncertainty (para.
7-3.2.1) is estimated. The simulation section includes a
discussion of the simulation model (para. 7-3.3.1), pre-
sentation of the simulation results (para. 7-3.3.2), and
estimation of simulation uncertainty (solution verifica-
tion in para. 7-3.3.3 and input parameter uncertainty in
para. 7-3.3.4). The paragraph for assessing the validation
comparison presents two approaches for calculating the
validation uncertainty (propagation equation approach
in para. 7-3.4.1, and a Monte Carlo approach in para.
7-3.4.2) and discusses the interpretation of the valida-
tion results (para. 7-3.4.3). The validation approach is
repeated for a second simulation model, with simulation
results and simulation uncertainty summarized in para.
7-3.5.1 and the validation comparison results summa-
rized in para. 7-3.5.2.

7-2 CODE VERIFICATION EXAMPLE

Verification is performed for the code features in the
simulation model applied in the validation assessment.
That simulation model (described later in subsection
7-3) includes numerically solving the partial differen-
tial equation for linear heat conduction with convec-
tion boundary conditions. Two analytical solutions

42

for code verification are developed in Nonmandatory
Appendix A using the method of manufactured solu-
tions. Both solutions are applicable to the simulation
model used in the validation example, but differ in
the code features that are tested. A variation of MMS
#1 in Nonmandatory Appendix A is used in this Sec-
tion to demonstrate code verification. The solution is
briefly described here. The solution was specifically
designed so that the mathematical operations required
for developing the manufactured solution (MS) could
be carried out by hand. However, symbolic mathemat-
ics software can make this task easier and is typically
necessary for more complex applications.

7-2.1 Problem Description

Linear steady heat conduction is to be verified for a two-
dimensional domain. The domain is taken as one-eighth
of a square (2.7 m X 2.7 m) with a circular hole (1.11 m in
diameter) in the center as shown in Fig. 7-2-1. The bound-
ary surfaces of the two-dimensional domain are labeled as
s, tos,. Although the two-dimensional domain selected for
the verification problem is similar to the two-dimensional
domain used in the validation, this is not required for code
verification. It is done for convenience here.

The partial differential equation in the code to be verified
is that for linear steady heat conduction and is given by
9°T

k x?

(7-2-1)

T _
61/2} 0

Fig. 7-2-1 Problem Domain With (x, y) Coordinates
Shown for Domain Corners

(2.7, 2.7

(2.7,0)

(1.11, 0)
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The boundary conditions to be verified are convective
boundary conditions defined on surfaces s, and s, as

)

nc_ n

(7-2-2)

0), =h, (T~ T)

n

where 1 is the normal to the surface.

7-2.2 Manufactured Solution

The processes described in Section 2 are applied to de-
rive an analytical solution using the method of manu-
factured solutions and perform code verification. The
selected analytical solution is

M (r, 0) =T, + cos(46) exp(r) (7-2-3)

For a specified temperature boundary condition the
value is applied from the analytical solution.

T(r, 0)|, =M, 0)],
B ’ (7-2-7)
T(r,0), =M(r, 6)|Sq
A specified normal heat flux boundary condition ap-
plies gradients of the analytical solution.

g, (r, 0)|. = K M —KM

q, (r, 0),

—-K [aM cos(6) — %% sm(&)]
(7-2-8)

—KM [Cos(e) + - tan(40) sm(@)]

A convective boundary condition can be prescribed
in two ways. First, a form is selected for the convective
temperature and the required convection coefficient to

where satisfy the boundary condition is calculated.

(r, 6) = the polar coordinates _
T = a constant, nominal temperature hr, 0)|s| =4, G)LI /1T (r, 0) = M(r, 0)] (7-2-9)
The solution is constructed in polar coordinates, but h(r, 0)|. =q (v, 0)|. /[T, (r, 0) — M (r, 6)]

the finite element code being verified will solve the prob-
lem in the Cartesian coordinate system. Similarly, the
solution is developed in dimensionless variables for con-
venience; the code could be set up to use these or the MS
converted to dimensional variables.

The steady heat conduction equation in polar coordi-
nates is used to derive the manufactured solution.

un ={h 40 bl

The thermal conductivity is a constant in eq. (7-2-4), k
= K. Note that a more general analytical solution is de-
veloped in Nonmandatory Appendix A to verify nonlin-
ear heat conduction where thermal conductivity, k, is a
function of temperature.

By operating on the manufactured solution, M, in
eq. (7-2-3), with operator, L, in eq. (7-2-4), the following
set of equations can be defined.

)] -0 (7-2-4)

where the normal flux, g, is computed from eq. (7-2-8).
Notice that for this manufactured solution the convec-
tion coefficient on surface s, will have negative values if
a constant convection temperature is selected. This is due
to the sign change in the normal flux on surface s,, which
can be demonstrated from eq. (7-2-8). Parameters taking
nonphysical values should be avoided. In this case, either the
convection temperature can be made to vary spatially or
the boundary condition can be specified in a different
manner, as discussed next. Alternatively, the convection
coefficient can be selected, and the convection tempera-
ture to satisfy the boundary condition is calculated.

T/(T’, 0)|S‘ =4, (7’, 6)|5. / hi (1’, 0) + M (1’, 0)'5l (7_2_10)
T (r, 6) =4,

Because the boundary conditions are derived from

L(T) = k[ ( 3T) + l Kl ( T )] — O, 6) the analytical solution, various combinations of the

rorl orl " g2 a0 ! boundary conditions can be verified with the same ana-

Q(r,0) = [ l _?] (7-2-5) lytical solution. Separate verification problems that test
the combinations of temperature, normal heat flux, and

The solution of eq. (7-2-5) is by definition convective heat flux boundary conditions could all be
T(r, 0) = M (r, 6) (7-2-6) tested with this one analytical solution. In most cases,

The boundary conditions are derived from the analyti-
cal solution and discussed next.

The boundary conditions are evaluated from the
solution in eq. (7-2-3) at the boundary surfaces of the
problem domain (Fig. 7-2-1). Along boundary surfaces
s, and s,, it can be shown that the normal flux is zero
because the gradient of the MS is zero. On boundary
surfaces s, and s,, temperature, normal flux, or convec-
tive conditions, which are typical in a thermal analy-
sis, could be specified from this manufactured solution.
The analytical forms of these boundary conditions are
given next.
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a general form of the boundary condition, allowing for
spatial variation of the specified quantity, is verified.
Results are presented for one combination of bound-
ary conditions, that being specified convective heat flux
on both surfaces s, and s,. Convective boundary condi-
tions are applied in the simulation model used in the
validation.

In practice if a particular form of a boundary condi-
tion is not performing as expected, using a different form
of the boundary condition is useful to diagnose whether
the performance is being caused by a particular form of
the boundary condition. Specifying the dependent vari-
able, in this case temperature, is a good starting pointin a
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code verification study to debug setting up and running
a code verification problem.

7-2.3 Code Verification Results

An unstructured mesh (grid) heat transfer code ap-
plying the finite element method is used to perform
calculations [1]. A series with four meshes is used in
the code verification study. The meshes are refined in
an unstructured manner on the interior of the domain;
the boundary of the domain is refined in a structured
manner. The unstructured refinement gives meshes that
do not have common nodes on the interior of the do-
main. An unstructured refinement is not required for
code verification. However, in general, an unstructured
refinement is a more rigorous test of the code verifica-
tion procedure than a structured refinement, the reason
being that an unstructured refinement does not have a
uniform refinement factor over the mesh while a struc-
tured refinement does. Furthermore, for commercial

software it may be easier to obtain a series of meshes
refined in an unstructured manner. The series of meshes
used in the example is shown in Fig. 7-2-2. The mesh
is refined such that the total number of elements over
the domain increased by approximately a factor of four
with each mesh refinement. A characteristic mesh size,
h, based on the edge length of the average element (dis-
cussed later) is reduced by approximately a factor of two
in each refinement.

A finite element computer code is set up to solve the
previously described differential equation with the ad-
dition of a source term on the right hand side. The code
solves the following differential equation

_ 1 [9*T L 9T _ .
LN =k SE+iF|=Qne @2
with the convective boundary conditions.
T
k- =q (r, 0| =h (Tl —T
n s, qn ( )ls] i ( s f) (7_2_12)

_p oT
kan

s = 6In (r’ e)ls = ho (Tls - Tx)

Fig. 7-2-2 Finite Element Meshes Used in the Code Verification Refinement Study

Mesh 4
39 elements

Mesh 2
680 elements

Mesh 3
173 elements

IRRARES

Mesh 1
2,769 elements

s

%
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The code is required to have functionality for applying
a spatially varying source term, Q(7, 6), in the differential
equation. The functional form of the source term in polar

Table 7-2-1 Parameter Values Used for the Code
Verification Example

coordinates is given in eq. (7-2-5). The convective bound- Input Parameter Value
ary conditions are specified with constant convection Thermal conductivity (k = K) 5W/mK
coefficients, h, and h, and the convection temperature Convection coefficient, h, 200 W/m2K
calculated from egs. (7-2-10) and (7-2-8). Convection coefficient, h, 10 W/m?K
q,(, 9], KM (r, 0)|,
Tf(7/9)|S:T'+M(”,9)L:—T+ . : ) e
. . ) : (r, 0)|. shc?u.ld be studied when p.0551b1e, in a c.o§1e Yerlflcatlon
% activity. As a demonstration, code verification results
T_(r, ). = q,(r, ) |sz + M, 6)] (7-2-13) are shown for the temperature at two locations, the inte-
= h, R grated heat flux along surface s, (the output used in the
KM, g)Lz validation study) and for the L, norm of the temperature

; [cos(6) + 4 tan(46) sin(6) | + M (r, 0)|

Because the code is solving in Cartesian coordinates (x,
), the polar coordinates for computing the source term
and convection temperatures are calculated from stan-
dard transformations.

S,

field.

Code verification using the temperature at two loca-
tions on surface s, is considered first. The locations are
near the midpoint of surface s, and have the (x, y) coordi-
nates listed below:

X y
r= 2T Location1:  0.990131, 0.5044969
6 = tan-(y/x) (7-2-14) Location2:  1.056862, 0.3433951

The differential equation defined in egs. (7-2-11) to
(7-2-13) is solved in a thermal analysis code [1]. This code,
and most commercial codes, uses an iterative method
(e.g., conjugate gradient method) to solve a linear sys-
tem of equations. The tolerance for the iterative method
needs to be set appropriately for a verification study. The
tolerance should be set small enough so that the approxi-
mation error in the linear system is less (2 to 3 orders
or magnitude; see Section 2) than the error obtained by
comparing the code’s solution to the analytical solution.
If the problem were nonlinear, the tolerance for the non-
linear solution would similarly need to be appropriately
set. The tolerance for the linear solution was set to 1e-8
using a generalized minimum residual (GMRES) method
in these calculations.

Four code solutions of eqs. (7-2-11) to (7-2-13) were ob-
tained using the parameter values in Table 7-2-1 and the
meshes shown in Fig. 7-2-2. Code verification evaluates
the error through comparison of the code’s solution to the
analytical solution in eq. (7-2-3). Code verification can be
performed for different code outputs. When verification
is being conducted as a precursor to validation the out-
put used in the validation activity is of primary interest.
Other code outputs could also be studied, and in general

Note that the mesh sequence was defined to have a
node at both these locations in all four meshes. If the
mesh sequence is not defined with a node at these lo-
cations, the code output must be interpolated from the
nodal solution to give the solution at the prescribed
locations. Comparison with the analytical solution in
this case will include mesh discretization error and
interpolation error. Generally, it is preferred to study
the discretization error separately from the interpola-
tion error. As long as the dependence of the interpolation
error on the discretization is of equal or higher order than
the mesh discretization error, the two errors can be stud-
ied simultaneously. However, only the lower ordered
error will be observed in the code verification.

Integrated code outputs are also of interest in code
verification. In this example the integrated heat flux
along surface s, is considered. This output is used in
the validation example. The code’s solutions of the local
temperature and the integrated heat flux for the four
meshes are listed in Table 7-2-2 with details of the ele-
ment count in the meshes. The analytical solutions are
listed at the bottom of Table 7-2-2. The analytical solu-
tion for the temperature is obtained from eq. (7-2-3). The
analytical solution of the integrated flux is obtained by

Table 7-2-2 Code Verification Results

Total Number of

Temperature at

Temperature at Integrated Flux Along

Solution Elements Elements Along s, Loc 1,°C Loc 2,°C s, W
Mesh 4 39 5 99.03772 100.96471 3.126 e-3
Mesh 3 173 10 99.05491 100.94549 6.123 e-4
Mesh 2 690 20 99.05954 100.94048 6.903 e-5
Mesh 1 2,769 40 99.06078 100.93926 1.571e-5
Analytical 99.0611593 100.9388433 0.0

45

Copyright ASME International
Provided by IHS under ||cénse with ASME
No reproduction or networking permitted without license from IHS

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

integrating the analytical expression for the normal flux
in eq. (7-2-8) along surface s,.
The error in the code’s solution is defined as

E, = flh) — foact (7-2-15)

where

feet = analytical solution

f(h) = code solution for that mesh

h = characteristic mesh size

The error can be evaluated for selected code outputs,
like temperature at selected locations or integrals of out-
puts. Norms of the error are also of interest, as theoretical
proofs of the error’s dependence on mesh are typically
in terms of norms of the error [2]. For example, the L,
norm is the integral of the error over the problem domain

(A).

= | EA,

0 Ao

L; (7-2-16)

Other error measures are the H, semi-norm that
integrates the error in the gradient and L norm that is the
maximum error over the domain [2]. As an example, the
L, norm of the temperature is evaluated in this example.
To evaluate the norm the error is integrated over the
domain. Gauss-quadrature has been used to calculate
the’L, norm here. Other numerical approximations could

convergence to the analytical solution. The errors
are decreasing monotonically as the code’s solution
converges to the analytical solution. The absolute value
of the error is plotted as a function of characteristic
mesh size in Fig. 7-2-3. The error (on log scale) in
Fig. 7-2-3 demonstrates approximately a linear depen-
dence on log(h) for all three code outputs considered.
As discussed in Section 2, for consistent numerical
solution methods (like finite element) on well-behaved
problems, the error in the solution is asymptotically
proportional to /¥, and

E, =fh) — f*<=Cl’ + HOT  (7-2-18)

where

H.O.T = higher order terms

In addition to checking that the code is converging to
the correct solution, code verification checks the rate of
convergence of the error. A reference line (Ch?) is plotted
in Fig. 7-2-3. The error in temperature at locations 1 and 2
and the L, norm are visually parallel to the reference line
(Ch?) indicating these errors have a second order depen-
dence on the mesh size (h). The integrated flux appears to
decrease at a higher rate than second order (p = 2).

The observed order of convergence can be estimated
from the error on any two meshes (see para. 2-4.1)

; E
be used, but the approximation error in evaluating the In ||
integral should be relatively small compared to E,. E,
The dependence of the error on a characteristic mesh pe = Tt (7-2-19)
21

sizeﬁiis studied. The characteristic mesh size in this study
is taken as the edge length for an average element area
(for this two-dimensional problem)

N,

elements

24

elements

h= (7-2-17)

where

A, = the area of element i

The total area of the domain (A,) is 3.16 m* for the
domain in Fig. 7-2-1. Other characteristics of the mesh
are the diagonal length across the element with the
maximum area (volume in 3-D) in the mesh [2].

The error in the code solutions for local (point) tem-
peratures, integrated flux, and L, norm are listed in
Table 7-2-3 as a function of the mesh and character-
istics mesh size. All three code outputs demonstrate

where

E, =E(h)

1, = h,/h, withh <h,

The observed order of convergence is listed in Table 7-2-4.
In the table the observed order of convergence between
subsequent meshes from eq. (7-2-19) is listed in the first
three rows. The coarsest mesh (mesh 4) may not be in the
asymptotic region for the local temperature; the higher
order terms (H.O.T) in eq. (7-2-18) may not be negligible
in comparison to the first-order term. Convergence rates
involving Mesh 4 are slightly less than 2, but increase to
values near 2 as the mesh is refined. The convergence rate
for the integrated flux along surface s, is slightly larger
than 2 for the results from meshes 3 and 4 and meshes 1
and 2. It is not clear why the rate increases to more than 3
for meshes 2 and 3. The errors are so small for this linear

Table 7-2-3 Error (Eh) in the Code Simulation During Mesh Refinement

Characteristic Refinement Temp Error at Temp Error at Integrated Flux L, Norm Temp
Mesh Mesh Size, h, m Factor, h,,/h, Loc 1, °C Loc 2, °C Error Along s, W Error, °C
4 0.2847 —2.343 e-2 2.586 e-2 3.126 e-3 3.175e-1
3 0.1352 2.11 —6.249 e-3 6.647 e-3 6.123 e-4 6.642 e-2
2 0.0677 2.00 —1.619e-3 1.636 e-3 6.903 e-5 1.717 e-2
1 0.0338 2.00 —3.793 e-4 4.167 e-4 1.571 e-5 4.366 e-3
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Fig. 7-2-3 Error as a Function of Characteristic Mesh Size
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problem that the noise in the observed p could be due to
roundoff error.

Alternately, the convergence rate for the sequence of
meshes can be estimated with standard regression on
the observed [log(h), log(E,)] data. The coefficients C and
p can be estimated from eq. (7-2-18) while neglecting
higher order terms. The observed convergence rate for
the four meshes using regression on the results from all
four meshes is listed in the last row of Table 7-2-4. The
observed convergence rate is approximately two (second-
order) for the local temperature and L, temperature norm
when estimated from the results with meshes 4 to 1.

The code verification results support that the com-
puter code gives (at least) second order accuracy in the
local temperature, the L, norm of temperature, and the
integrated flux along a surface. Note that this is a rela-
tively easy problem. Even for the coarsest discretization
(mesh 4), the code is very accurate. The numerical error
at locations 1 and 2 is less than 0.026°C (out of 100°C)
and the L, norm of the error less than 0.32°C. In this case
of an unstructured refinement, the refinement factor is
not uniform over the domain. The characteristic size of
each element in the coarse mesh is not uniformly halved
when the element is refined to produce the subsequent
mesh. However, the numerical error convergences in a
monotonic and consistent manner and convergence rates
based on an average refinement factor do not appear to
be affected.

The results have established that the computer code
is verified to (at least) second order accuracy in the local
temperature, L, norm of the temperature, and integrated
flux along a surface. An additional step can be taken to
confirm that code is converging at an observed rate and
that rate is correct. The additional step involves com-
paring the observed convergence rate to the anticipated
convergence rate, with the objective being to establish
that code is free of coding mistakes (for the code features
tested in the verification problem). The difficulty is in
identifying the anticipated rate. Under certain conditions
the convergence rate for selected error measures can be
theoretically determined. For example, the convergence
rates for various norms of the error with a finite element
method can be theoretically derived [2]. The theoreti-
cal convergence rates, however, are derived for simpli-
fied cases, typically linear differential equations and for
norm-based error measures. In the absence of theoretical
convergence rates, judgment is required. Based on the
numerical algorithms in the code there may be an expec-
tation for the order of a code output. If code verification
indicates the observed order is less than expected, then |
the results should be communicated to the code develop-
ers. ‘

For the code verification results obtained in this -
study, the L, norm of the temperature can be theo- -
retically shown to be second order, and the observed .
convergence rate confirms that second order accuracy

Table 7-2-4 Observed Order of Convergence (p°>*) From Mesh Refinement

Meshes Temperature at Loc 1 Temperature at Loc 2 Integrated Flux on s, L, Norm of Temperature
3and 4 1.77 1.82 2.19 2.10
2and 3 1.96 2.03 3.16 1.96
land?2 2.07 1.97 2.13 1.97
All (1 to 4) 1.93 1.94 2.55 2.01
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is obtained. There is not a known theoretical basis
for the convergence rates of the local temperature or
the integrated surface heat flux (for a finite element
method). Given that both outputs demonstrate sec-
ond order convergence, there is little concern that
a code mistake may be degrading the (order of) ac-
curacy of the code. If, however, the convergence
rate of local temperature was first order, further
investigation may be warranted to understand why
first order convergence was obtained. Paragraph
2-3.3.3 provides additional discussion on possible
causes for lower than expected convergence rates.

7-3 VALIDATION EXAMPLE

In this Section, the validation procedure presented
in this document is demonstrated through its appli-
cation to an example problem. The example involves
quantifying the accuracy of a model to predict the heat
transfer rate in a fin-tube heat exchanger. Each aspect
of the validation procedure is demonstrated. The steps
in the procedure are demonstrated with the example of
this Section for

(a) estimating uncertainty in experimental data

(b) estimating uncertainty for the numerical error in a
simulation (solution verification)

(c) estimating uncertainty in the simulation due to
input parameter uncertainty

(d) evaluating the validation uncertainty

(e) interpreting the validation comparison

True validation requires experimental data. However,
the example validation exercise presented here uses syn-
thetic data for good reason. The validation procedure is
presented without ambiguities, clearly described with
controlled sources of error, and the parameters can be
manipulated to elucidate behavior of interest.

The remainder of this Section provides an overview
of the example problem. The experimental configuration
and measured experimental data for validation of the
model are described in the para. 7-3.2. Uncertainty in

the experimental data is also estimated in this Section.
The model is discussed in para. 7-3.3, including the ef-
fects of uncertainty in the model input parameters and
solution verification. The validation uncertainty and
interpretation of the comparison are discussed in para.
7-3.4. Both propagation equation and Monte Carlo ap-
proaches are applied for computing the validation
uncertainty. Paragraphs 7-3.2 through 7-3.4 apply the
validation approach of this document from begin-
ning to end on the example problem. In para. 7-3.5 the
assessment of a second simulation model is summa-
rized. The second model has been updated to include
additional physics that the first model did not include.
Model updating is not considered part of the validation
approach. However, if additional information becomes
available and an update to the model is proposed, the
validation procedure can be repeated to assess the
updated model.

7-3.1 Validation Problem Overview

The objective of this exercise is the validation as-
sessment of a simulation model for predicting the heat
transfer rate from a horizontal fin-tube heat exchanger.
A schematic of the fin-tube heat exchanger assembly is
shown in Fig. 7-3-1. A heated fluid is circulated through
the tube with attached fins. Heat from the fluid is
exchanged with cooler ambient air surrounding the fin-
tube heat exchanger. The fluid flows with a volume flow
rate Q, enters with a bulk temperature of T, and exits at
a bulk temperature of T. The tube has a circular geom-
etry defined by an inner radius (r,), outer radius (r,), and
length (L). The fins have a thickness w, and are equally
spaced along the length of the heat exchanger at a dis-
tance w,_. The ambient air temperature is constant along
the length of the heat exchanger with value T_. The fins
are square in profile with an edge length of a.

A simulation model of the total heat transfer rate is
compared to experimental data in the validation assess-
ment. The total heat transfer rate is simulated with an
energy balance on the fluid and requires numerically

Fig. 7-3-1 Schematic of Fin-Tube Heat Exchanger Assembly
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solving the partial differential equation for linear steady
heat conduction with convective boundary conditions.
Total heat transfer rate in the experiment is calculated
from measurements of the fluid flow rate and bulk
fluid temperatures at the inlet and outlet through a data
reduction equation.

7-3.2 Experimental Data

The experimental data are based on a fin-tube heat
exchanger with a copper tube and aluminum fins using
heated water as the working fluid. Synthetic experimen-
tal data are generated based on the materials, dimensions,
and nominal settings listed in Table 7-3-1. The synthetic
process to generate the experimental data represents
building an experimental apparatus and conducting the
experiments.

A suite of 10 repeat experiments is conducted on a sin-
gle fin-tube heat exchanger. In each experiment the bulk
fluid temperatures at the inlet and outlet, the volume
flow rate, and ambient air temperature are measured.
The ambient air temperature, while not needed to ex-
perimentally calculate the total heat transfer rate in the
experiment, is needed to simulate the total heat trans-
fer rate with the model. It is important that the modeler
communicate with the experimentalist to ensure that all
conditions necessary for modeling the experiment are
measured (such as the ambient temperature). The total
heat transfer rate in the experiment can be calculated as

qD = pQCp(T, - Tu) (7‘3-1)

where
C = specific heat
(5 = volume flow rate
= overall heat transfer rate, W
(T, — T ) = bulk fluid temperature drop along the heat
exchanger
p = density of the fluid
The measured data for the suite of 10 experiments and
the calculated total heat transfer rate in the experiment

Table 7-3-1 Details of the Fin-Tube Assembly
and Flow Conditions

Material Value
Internal fluid Water
Tube material Copper
Fin material Aluminum
Tube inner radius, r;, m 1.03e-2
Tube outer radius, r,, m 1.11e-2
Fin edge length, a, m 5.40e-2
Fin thickness, w, m 2.54e-4
Fin spacing, w,,m 4.8e-3
Number ofﬁns N 500
Length, L, m 2.54

6.34e-6 (nominal)
70 (nominal)
22 (nominal)

Volume flow rate, Q(m?3/s)
Fluid inlet temperature, T, °C
Ambient temperature, T, °C

are given in Table 7-3-2. The average of the measurement
over the 10 experiments is given in the last row of Table
7-3-2.

There is variation in the measurements and total
heat transfer rate derived from the 10 experiments in
Table 7-3-2. The experiments were (synthetically) run
on the same fin-tube heat exchanger. Thus, no varia-
tion is due to changes in the heat exchanger materials
or geometry. The variation is due to

(a) repeating the experimental conditions

(b) random measurement error

The 10 experiments had nominally identical flow con-
ditions. However, the driving flow conditions, the inlet
fluid temperature, volume flow rate, and ambient tem-
perature, are replicated between experiments to the accu-
racy that they are controlled and measured. For example,
the inlet temperature was specified to be nominally 70°C.
The true inlet temperature for one experiment may be
70.1°C. The measured inlet temperature is 70.1°C plus
measurement error. In validation applications where the
driving conditions vary due to lack of repeatability of the
experiment, this variation can be accounted for by using
the measured driving conditions of the experiment in the
model. If the experimental conditions can be effectively
replicated (i.e., the same driving conditions for repeated
experiments), the effect of the random contribution to the
measurement error can be reduced by averaging over
multiple experiments.

Several measurements are used to compute the total heat
transfer rate and all measurements have an associated un-
certainty. Uncertainty estimates for measurements may be
obtained from the manufacturer’s specifications or through
device calibration. For physical properties, such as density
and specific heat of water, judgment may be required. With
uncertainty estimates for the random and systematic con-
tributions to the measurement uncertainty, the uncertainty
in the total heat transfer rate can be estimated. Estimates
of the experimental standard uncertainties are provided in
Table 7-3-3. The bulk fluid temperatures and volumetric
flow rate have random and systematic uncertainties asso-
ciated with the measurements. The sensors for measuring
the bulk fluid inlet and outlet temperatures have been cali-
brated to provide the accuracy listed in the table. Further-
more, the calibration was performed to the same standard
for the inlet and outlet bulk fluid temperature sensors. By
calibrating with same standard, the systematic errors for
the inlet and outlet fluid temperature are identical (per-
fectly correlated). In this case, the covariance of the system-
atic uncertainty [i.e, b, in the propagation equation shown
in eq. (7-3-2)], for the inlet and outlet bulk fluid tempera-
tures is the product of the systematic uncertainties, b, of the
two measurements. The other systematic uncertainties are
uncorrelated, b, = 0. Properties of water are taken from a
database [3] and estimated to have standard uncertainties
of 0.5% and 1% for density and specific heat. Uncertainties
in the dimensions of the physical hardware are considered
to be negligible.
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Table 7-3-2 Measured Flow Conditions and Calculated Total Heat Transfer Rate

Experiment p, kg/m? Q, m’/s Cp, J/kg°C T,°C T,°C T_,°C q, W
1 990 6.21 e-06 4,180 70.09 67.21 21.66 74.0
2 990 6.24 e-06 4,180 70.14 67.22 22.31 75.4
3 990 6.21 e-06 4,180 70.09 67.17 22.02 75.0
4 990 6.24 e-06 4,180 70.01 67.25 22.14 71.3
5 990 6.22 e-06 4,180 70.12 67.29 21.99 72.8
6 990 6.25 e-06 4,180 70.02 67.04 22.10 77.1
7 990 6.22 e-06 4,180 70.19 67.11 21.88 79.3
8 990 6.25 e-06 4,180 69.97 67.18 21.94 72.2
9 990 6.23 e-06 4,180 70.17 67.25 22.08 75.3
10 990 6.26 e-06 4,180 70.17 67.23 22.11 76.2
Average 990 6.23e-06 4,180 70.10 67.20 22.02 74.9

7-3.2.1 Experimental Uncertainty, u,.

The effect of

uncertainty in the values used to calculate the total heat
transfer rate from eq. (7-3-1) can be estimated with the
propagation equation. The approach to estimate experi-
mental uncertainty in the total heat transfer rate due to
uncertainty in the measurements used to compute it is
presented in Section 4. The propagation equation for sys-

tematic uncertainties is
J
2 _
b a5 E

i=1

i=1k=i+1 0X, 90X,

g, \2 X~ g, 9
(ixb P X Mo Moy (g5
0X.

where | = 5 is the number of uncertain variables in
the experimental data reduction equation. Terms for
independent and correlated systematic uncertainties
are included in eq. (7-3-2) because the experiment has
correlated systematic input uncertainty in the measured

bulk fluid temperatures.

The propagation equation for random uncertainties is

I
dJ 2
=3 (s
i=1 | 0X,
The propagation equations require
(a) partial derivatives (sensitivity coefficients)

(7-3-3)

of the

total heat transfer rate with respect to the measurements

used to compute it

(b) estimates of the random and systematic uncertain-

ties in those measurements

As discussed later in this Section, the effect of random
uncertainty on the total heat transfer rate can also be

estimated directly from the 10 experiments.

Table 7-3-3 Estimates of the Experimental

Measurement Standard Uncertainties

Uncertainty (Standard)

For the simple data reduction equation in eq. (7-3-1), the
partial derivatives needed in eqs. (7-3-2) and (7-3-3) can be
analytically derived (other approaches for obtaining partial
derivatives for more complex cases are discussed in Section
3). The sensitivities of the total heat transfer rate to each of
the five inputs needed to calculate it are as follows.

aq,

o — ,0C

o pQC,

9

aqTD__pQC”

aq,)

2= oC(T.— T 7-3-4
20 pC(T,—T) ( )
an

—2=QC(T.— T

P QC(T,—T)

aq,

D= T, - T

C pQ(T,—T)

As discussed in Section 3, multiplying the partial
derivatives by the parameters to give scaled sensitivity
coefficients is useful. Numerical values of the scaled sen-
sitivity coefficients are listed in Table 7-3-4, and these
were computed using the average of measurements over
the 10 experiments (last row of Table 7-3-2). Because the
partial derivatives depend on the magnitude of the mea-
surements, the magnitudes of the partial derivatives will
vary between the experiments. However, given the small
differences in the measurements between experiments,
the magnitudes of the partial derivatives for other
experiments are within 1% of the values (evaluated with
the average measurements) listed in Table 7-3-4.

Table 7-3-4 Sensitivity Coefficients for
Average Conditions

Variable, X, Random, s, Systematic, b, X x,% Standard Uncertainty

X, Random, s, Systematic, b.
T,°C 0.05°C 0.1°C ! !
T,°C 0.05°C 0.1°C T, 1,808, W 0.07 % 0.14 %
Q, m*/sec 0.5% 1.0% T, —-1,734, W 0.07 % 0.14 %
p, kg/m? 0.5% Q 74.9,W 0.5 % 1.0%
Cp,]/kg°C 1.0% p 74.9,W 0.5 %
T_,°C 0.22°C Cp 74.9,W 1.0 %
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The magnitudes of the scaled sensitivity coefficients
can be compared to identify the parameters that have the
largest impact on the total heat transfer rate. The inlet
and outlet fluid temperature are seen as the parameters
that have the largest scaled sensitivity coefficients and
hence will have the largest impact on the total heat trans-
fer rate.

The uncertainty in the total heat transfer rate derived
from the experiment can be estimated with eqs. (7-3-2)
and (7-3-3) using the partial derivatives and the uncer-
tainty estimates (repeated from Table 7-3-3) in Table 7-3-4.
[Note that the uncertainty estimates are provided in rela-
tive magnitudes so that the propagation can be readily
evaluated with the scaled sensitivity coefficients. While
generally not a good practice to provide uncertainty in
(nonabsolute) temperature measurements in relative
terms, it is done here for convenience.]

The random and systematic uncertainties in the
total heat transfer rate estimated with the propagation
equation are listed in the last row of Table 7-3-5. The
random contribution to the measurement uncertainty
can also be estimated from the 10 experiments directly
instead of using the propagation approach. The random
uncertainty is estimated as the standard deviation in
the total heat transfer rate from the 10 experiments.
The random contribution estimated from the variation
among the 10 experiments is shown near the middle
of Table 7-3-5. Estimating the random uncertainty di-
rectly from multiple experiments assumes that random
measurement error is causing the variation between the
experiments. The random uncertainty estimated from
the 10 experiments is about 30% larger than the random
uncertainty estimated from the propagation equation.
The systematic uncertainty can only be estimated with
the propagation equation.

The random and systematic contributions to the
uncertainty in the total heat transfer rate are listed

Table 7-3-5 Experimental Values of Total Heat
Transfer Rate and Its Standard Uncertainties

Experiment g, W s, W b ,W u = V}; +b;, W

q,’

74.0
75.6
75.1
71.4
72.8
77.0 2.39 1.15 2.65
79.3
72.1
75.1

0 76.2 4

Average 74.9 1.84 1.15 2.17

P OV 00NNV~ WNRP

separately in Table 7-3-5. The uncertainty values are based
on using the sensitivity coefficients evaluated at the aver-
age of the measurements over the 10 experiments. If the
sensitivity coefficients are evaluated at the measurement
values of each experiment, the uncertainty values change
less than 1%. The overall uncertainty in the measured
total heat transfer rate is
Uy = s + b2 (7-3-5)
The measured total heat transfer rate with standard
uncertainty limits of u, are plotted in Fig. 7-3-2. The un-
certainty in each experiment and the average of the 10
experiments (dash line) and its uncertainty are shown in
the figure. The standard uncertainty on the experimen-
tally measured total heat transfer rate is approximately
3% and has a larger contribution from the random un-
certainties than from the systematic uncertainties. An ad-
ditional step could be taken to identify the parameters
that are the main contributors to the uncertainty in total
heat transfer rate using importance factors. Importance
factors are discussed in Nonmandatory Appendix B.

Fig. 7-3-2 Experimental Total Heat Transfer Rate and Its Standard Uncertainty, u,
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7-3.3 Simulation o, o, oT,
a(_) + [ a(k—)—o tube
7-3.3.1 Simulation Model. The model to simulate the P) axl oy\ oyl @ oz
total heat transfer rate from the fin-tube heat exchanger
is summarized here. Details of the model development (7-3-9)
are given in Mandatory Appendix I. The model of the
total heat transfer from the fin-tube heat exchanger is BT BT aT
o a(_)a(_) 2 D)o
=pQC, (T, ~ T)|exp ( 20C ) -1 (7-3-6) ox\" ox/ ody\’ dy| oz !
The thermal properties and convection coefficient are
where constant. Perfect contact is imposed at the interface of the
A, = wetted area of the tube’s inner surface (A, = 27rr,L) tube and fin
C, = specific heat aT, aT,
—k —| =—-k !
Q = volume flow rate ar I A (7-3-10)
g, = overall heat transfer rate, W _ .
T = bulk fluid temperature at the outlet T(r,0) = Tfr2,6)

T, = ambient air temperature
U, = axially averaged overall heat transfer coefficient
p = density of the fluid

The axially averaged overall heat transfer coefficient
is computed from the heat transfer coefficients on the
finned (subscript f) and unfinned (subscript #f) portions

of the tube
T - Uflwf+ Unﬂwnf

1

(7-3-7)
: wy +w, i
The expression for the overall heat transfer coefficients

through the unfinned region of the heat exchanger is

Boundary conditions are applied at the inner surface
of the tube and at outer the edge of the fin. The boundary
condition form at the inner surface of the tube is

JT,
—k —

or M [Tﬂ -

.0

T (r,0)] (7-3-11)

where
r, = inner radius of the tube
T, =bulk fluid temperature
6 = traditional polar coordinate for cylindrical geometry

The front and back surfaces of the fin (s ) have
convection to the ambient air.

1
u, = (7-3-8)
i,
1 1 T
1. hL L) n(r,/r,) + D _kf = hf (Tf| 5~ T, (7-3-12)
no omk by, ok

In eq. (7-3-8), h, and h, are the convective heat transfer
coefficients on the inside and outside of the bare tube,
respectively, k, is the thermal conductivity of the tube,
and r, and r, are the inner and outer radius of the tube,
respectively. The heat transfer coefficient on the unfinned
region (U, ) is calculated with the thermal properties
and dlmensmns of the tube and convection coefficients
on the inside and outside of the tube. Convection coef-
ficients are estimated based on empirical correlations for
flow in a pipe and natural convection from a horizontal
cylinder.

The overall heat transfer coefficient for the finned re-
gion (U,) is calculated by solving for the heat trans-
fer through a section of the fin-tube heat exchanger.
The heat transfer model for the finned region of
the heat exchanger is shown in Fig. 7-3-3. Symme-
try is applied so that one-eighth of the cross section
is modeled. The model is three-dimensional with a
single element through the thickness of the fin and
tube.’ The partial differential equation for steady
heat conduction is numerically solved over the cross
section.

0 An equivalent two-dimensional model of the heat transfer could
also be developed for the configuration.
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Fig. 7-3-3 Heat Transfer Model for the
Fin-Tube Assembly
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The form of the boundary condition at the edge of the
finis

L

P on o, v N hf [Tf (xb’ yh) -T]

(7-3-13)

where
n = outward normal at this surface

in the experiment are applied in the model. The uncertain-
ties assigned in the example are realistic, but should not be
taken as universally applicable to other situations.

The simulation value for the total heat transfer rate is
calculated as follows. The two-dimensional heat transfer
in a fin-tube section, defined by egs. (7-3-9) to (7-3-13),

(x, y,) = boundary surface of the fin (fin edge opposite  is solved, and the overall heat transfer coefficient for the
the tube) finned region of the heat exchanger, U,, is calculated with

Adiabatic conditions are applied along the lines of eq. (7-3-14). This solution is done 1naﬁmte element code
symmetry. that directly computes the integral of the flux in eq. (7-3-

The heat flux over the inner surface of the tube is
integrated to calculate the overall heat transfer coefficient.

u-—*4+

' 'n'(Tﬂ -T)0"

The model for simulating the heat transfer rate
requires 10 parameters for eqs. (7-3-6) to (7-3-14). The
values and standard uncertainty for parameters used
in the simulations are listed in Table 7-3-6, and all other
parameters (associated with the geometry) are held con-
stant with no uncertainty. Thermal conductivities of the
tube and fin are taken from database values for copper
and aluminum [3]. Uncertainty (systematic) in the ther-
mal conductivities is assigned a 5% standard uncertainty.
Convection coefficients are estimated for the conditions
of internal flow in a pipe and for natural convection from
a cylinder and fin. Convection coefficients are assigned
a 10% standard uncertainty. The ambient temperature,
fluid temperature (taken as the inlet bulk fluid tem-
perature), and flow rate are measured in the experiment
(values are given in Table 7-3-2). Uncertainties in these
parameters are assigned from the measurement uncer-
tainty in Table 7-3-3. Density and specific heat of water
are taken from database values. The same values and stan-
dard uncertainties for computing the total heat transfer rate

W[T, = T(r, 0)]d0 (7-3-14)

Table 7-3-6 Simulation Model Input Parameters
and Standard Uncertainties

Uncertainty (Standard)

14). The overall heat transfer coefficient on the unfinned
region of the heat exchanger, U . , is calculated with eq.
(7-3-8). The overall heat transfer coeff1c1ents are used in
eq. (7-3-7) to calculate the axially averaged overall heat
transfer coefficient and the simulated value of the total
heat transfer rate is calculated from eq. (7-3-6).

7-3.3.2 Simulation Results. Ten experiments were
conducted in this validation activity. Simulation results
could be generated for each experiment, or a representative
simulation could be generated for the set of experiments.
Deciding what simulation results are needed depends on

(a) what is varying in the experiments and what im-
pact does the variation have on the model

(b) what is feasible given the computational expense
of the simulation

The experimental outcome may vary due to random
measurement error, variation in the driving conditions of
the experiment, and variation in the physical hardware
(e.g., experiments conducted on different physical hard-
ware). In this example, only the first two sources exist.
As a demonstration, two approaches are considered for
simulating the experiments. First, a simulation is gener-
ated using the measurements from each experiment. Sec-
ond, a single simulation is generated using the average
of the measurements from each experiment. Additional
comments are provided below on the issue.

In experimental applications where the initiating or
driving conditions vary due to lack of repeatability, but
these conditions can be measured, each experiment may
be simulated using the measured conditions. Simulating

Parameter Value Random, s, _Systematic.b, each experiment at the measured conditions aligns each
k.(W/m Q) 386 5% simulation with each experiment. This may not always
. 0 be feasible given the computation expense or may not
kO/m°C) 204 o% be needed. %n some Casesfjthe Variatilf)n in the dr}ilving
h, (W/m?°C) 150 10% experimental conditions may have negligible impact on
h, (W/m?°C) 6 10% the simulation. The sensitivity to the experimental condi-
tions can be studied by running the simulation at bound-
h,(W/m?°C) 6 10% ing values of the experimental conditions or through an
T Co Measured 1% uncertainty analysis.

- The simulation values of the total heat transfer rate are
T,(0 Measured, T, 0.05°C 0.1°C listed in the second column of Table 7-3-7 for individually
Q (m?/ seq) Measured 0.5% 1.0% simulating each experiment in the suite of experiments.

In addition, the simulation using the average measured
p (kg/m?) 990 0.5% conditions is shown in the last row. In this case, noting
C (/kg"0) 4,180 1% that the variation among the individual simulations of
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total heat transfer rate is small, it is concluded that the
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Table 7-3-7 Simulation Values of Total Heat

Table 7-3-8 Solution Verification Results for Total

Transfer Rate Heat Transfer Rate
Experiment q,W Mesh h-Tube (Relative)  h-Fin (Relative) q, W
1 97.9 1 0.125 0.119 97.89981
2 96.7 2 0.25 0.239 97.89765
3 97.2 3 0.5 0.477 97.88894
4 96.8 4 1 1 97.85440
5 97.3
6 96.9
7 97.7 transfer rate had a monotonic dependence on the charac-
8 7.1 teristic mesh size. The procedure outlined in para. 2-4.1 is
9 97.2 . . . .
10 97.2 applied to estimate the numerical uncertainty. The proce-
Average 97.2 dure uses a sequence of three meshes. The numerical un-

variation in the experimental conditions that are input to
the model had a small effect on the simulation.

7-3.3.3 Solution Verification, u . The simulated
total heat transfer rate has a dependence on the mesh used
in solving for the heat transfer in the fin-tube cross section.
All simulations were run with the mesh shown in Fig. 7-3-
3. This mesh was the second mesh from a series of meshes
generated for the simulation. The series started with a
coarse mesh and approximately doubled the mesh density
three times in an unstructured manner to create the series
of four meshes. The series of meshes is used to estimate the
numerical uncertainty in the simulated heat transfer rate.
The numerical error could have been estimated prior to
selecting a mesh to simulate the experiments. In this man-
ner, the mesh required for a numerical uncertainty that was
negligible compared to other uncertainties (e.g., experimen-
tal uncertainty or input parameter uncertainty) could be se-
lected. If numerical uncertainty is to be made small relative
to the uncertainty due to input parameter uncertainty, some
iteration may be required to select the required mesh. This
is because a mesh is needed to evaluate the uncertainty due
to input parameter uncertainty.

The approach described in subsection 2-4 for solution
verification is used to estimate an uncertainty for the
numerical error. The simulation was run for the mesh
series that successively refined the finite element mesh.
The refined mesh sequence doubled the mesh density in
the tube and approximately doubled the mesh density
in the fin. The simulation was run for each of the four
meshes. The relative characteristic mesh size in the tube
and fin and the simulated heat transfer rate are listed in
Table 7-3-8. The average element edge length is selected
as the characteristic mesh size. This mesh characteristic
is halved as the mesh is refined in the tube and approxi-
mately halved in the fin. The characteristic mesh size for
the combined fin-tube assembly is within round-off of
the characteristic mesh size for the fin.

The simulated total heat transfer rate as the mesh was
refined is plotted in Fig. 7-3-4. The simulated total heat
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certainty is estimated with two sequences of three meshes
from the four meshes. First, uncertainty is estimated using
the sequence of meshes from Mesh 2 (fine) to Mesh 4
(coarse). Then, the estimates are calculated using the se-
quence from Mesh 1 (fine) to Mesh 3 (coarse). With these
two sequences the constancy of the convergence rate can
be checked.

The results of the solution verification are listed in
Table 7-3-9. The order of convergence is listed in the sec-
ond column, representative error estimates are listed in
columns three and four, and the numerical uncertainty
estimate from the Grid Convergence Index (GCI) is listed
in the final column. The observed order of convergence
is 2 for both mesh sequences. The relative differences are
order 10* or smaller. The GCI is order of 10 and 10+ for
the two mesh sequences. From eq. (2-4-12), the dimen-
sional numerical uncertainty estimate, u__, is related to
the dimensionless GCI as

num’

GClgne

num S

(7-3-15)

where the dimensional scaling value g, = 97.2 W is taken
as the simulation of the total heat transfer rate at the
average conditions. The magnitude of u__is given in the
final column of Table 7-3-9.

Mesh 3 was used to generate the simulation results in
the previous section. The numerical error estimate from
the first mesh sequence (in Table 7-3-9) is applicable for
Mesh 3. The magnitude of the numerical uncertainty
could be argued as negligible given the magnitude of the
experimental uncertainty. The numerical uncertainty is
over an order of magnitude smaller than the experimental
uncertainty. For completeness, the numerical uncertainty
value is included in the remainder of the analysis.

7-3.3.4 Simulation Input Parameter Uncertainty,
u,,» The parameters required to simulate the total heat
transfer have uncertainty in their values. Estimates of
the standard uncertainty in the parameter values are
provided in Table 7-3-6. Both random and systematic
uncertainties are present. The effect of uncertainty in the
values used to simulate the total heat transfer rate can be
estimated with the propagation equation. The approach
discussed in Section 3 is applied to estimate the effect of
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Fig. 7-3-4 Mesh Refinement Study for Solution Verification
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input parameter uncertainty. The propagation equation
for systematic uncertainties is
g, \?
=2 (—5 bi) (7-3-16)
=1\ 0X

The propagation equation for random uncertainties is

s2= i (% s.)2
=4 X, '

The propagation equation requires partial derivatives
of the simulated total heat transfer rate with respect to
the uncertain parameters. These partial derivatives are
calculated with a second order central finite difference

(7-3-17)

Although not shown in the document, the total heat
transfer was closely approximated as linear with re-
spect to the parameters over the range of the standard
uncertainty. The values at the nominal, forward pertur-
bation, and backward perturbation were plotted for each
parameter, and adherence to a linear relationship over
the three values was observed. The magnitude of the pa-
rameter perturbation was equal to the standard uncer-
tainty in each parameter. This gives an approximation to
the partial derivative over the range of the standard un-
certainty. If the heat transfer rate is approximately linear,
the partial derivative is independent of the parameter

approximation. perturbation magnitude.
ag.  g(X + 8X) — (X — 8X) The partial derivatives (sensitivity coefficients), which
a_XS = ’26X S : (7-3-18) are computed using a central difference approximation,

The simulation is run while individually perturbing
each parameter to approximate the gradients. The central
difference approximation requires a positive and nega-
tive perturbation in each parameter. The total number of
additional simulations needed for this approximation is
2 times the number of parameters. Alternatively, a forward
or backward difference could have been used and required
one-half as many additional simulation. The advantage of
a central difference approximation is that

(a) itis a second order approximation

(b) the linearity of the simulation (in parameter space)
can be checked

are listed in Table 7-3-10. The derivatives are evaluated
using the average measured input conditions (inlet
temperature, flow rate, ambient temperature) over the
10 experiments. The simulation partial derivatives do
vary with experiment because the input variables vary
between experiments. The variation in input variables,
which is due to the measured inputs used in the simu-
lation, is not significant, and partial derivatives for the
average measured conditions are representative of those
for the individual experiments. If the variation in simu-
lating the separate experiments is significant, the partial
derivatives may need to be computed separately for the
simulation of each experiment.

Table 7-3-9 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer Rate

Mesh Sequence p(observed) e, % esn% GClir. % u, W

Mesh 2 to Mesh 4 1.99 3.530e-4 4.718 e-4 1.416 e-3 0.07

Mesh 1 to Mesh 3 2.01 8.898 e-5 1.183 e-4 3.550 e-4 0.02
55

Copyright ASME International
Provided by IHS under license with ASME
No reproduction or networking permitted without license from IHS

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

Table 7-3-10 Partial Derivatives of the Total
Heat Transfer Rate for the Simulation Model With
Respect to Uncertain Model Inputs for the Average
of Measured Experimental Conditions and Standard
Uncertainty for the Inputs

Uncertainty (Standard)

aq
X, X X’ w Random, s, Systematic, b,

k. (W/m “C) 0.015 5%

K, (W/m “C) 0.19 5%

h, (W/m2°C) 48.21 10%
h, (W/m2°C) 41.16 10%
h, (W/m?°C) 3.77 10%
7.(0 -44.53 1%

Tﬂ (| 141.72 0.07 % 0.14%
Q (m3/ sec) 3.91 0.5% 1.0%
p (kg/m3) 3.91 0.5%
¢, U/keg"0 3.91 1%

The standard uncertainty in the parameters for the
simulation is propagated through the simulation model
with egs. (7-3-16) and (7-3-17) using the partial deriva-
tives and input parameter uncertainty in Table 7-3-10.
(Note that these standard uncertainties are the same as
the values listed in Table 7-3-6 and repeated here for
convenience.) The random contribution to the uncertainty
can be estimated by propagation through the model or in
the case that a simulation is computed for each experi-
ment by estimating the standard deviation among the
10 experiments as was discussed for the experimental un-
certainty in para. 7-3.2.1.

The magnitudes of the random and systematic standard
uncertainties in the simulation of total heat transfer rate are
listed at the bottom of Table 7-3-11 from the propagation
approach. If a single simulation at the average conditions
and its uncertainty due to uncertain inputs were estimated,
the values at the bottom of the table would be obtained.
If, however, a simulation were generated for each experi-
ment, the random contribution to the uncertainty could be
estimated from the uncertainty in the 10 simulations. The
random uncertainty listed for the individual experiments
is the standard deviation among the simulated total heat
transfer of the 10 experiments.

The effect of random uncertainty is relatively small

The standard uncertainty in the total heat transfer
rate due to input parameter uncertainty is approxi-
mately 6.6%. The contribution of each parameter to the
uncertainty in the simulation can be identified with im-
portance factors. Importance factors are discussed in
Nonmandatory Appendix B. Importance factors indicate
that the convection coefficients on the inner surface of
the tube (h,) and outer surface (/,) account for 99% of the
simulated systematic uncertainty in the total heat trans-
fer rate. The convection coefficient on the inner surface
accounts for about 57%, and the coefficient on the outer
surface accounts for about 42%.

7-3.4 Assessing the Validation Comparison

At this point in the analysis, the magnitudes of
difference between the simulation and experimental
measurements are known

E=S-D=g,—q, (7-3-20)

The validation uncertainty u , is an estimate of the stan-
dard deviation of the parent population of the combination
of all errors except the modeling error in S and D. Standard
uncertainty components v, u, ., and u, that combine to
give u _ have been estimated. If the uncertainties in the ex-
periment and simulation are effectively independent, then
combining the uncertainties is simple.

— 2 2 2
uval - \/uD + uinput + Unum

(7-3-21)

However, in this example the uncertainties in the ex-
periment and simulation are not independent. The reason
that the uncertainties are not independent is discussed in
the following section where the approach for computing
u_,is presented.

7-3.4.1 Propagation Approach for Evaluating the Valida-
tion Uncertainty, v . The simulation and experimental
uncertainties are not independent because parameters are

common between the simulation and experiment. This

Table 7-3-11 Simulation Values of Total Heat
Transfer Rate and Its Standard Uncertainty From
Input Parameter Uncertainty

Uncertainty (Standard)

compared to the systematic uncertainty. The uncertainty Experiment q, W S0 W bW Upor W
fiue to model input uncertain.ty is cor.npu.ted by combin- | 97.9 1
ing the random and systematic contributions. 2 96.7
_ 2 2 3 97.2
uinput - sqs + b’?s (7_3_19) 4 96.8
The simulation of the total heat transfer rate and > 7.3
. . . . . 6 96.9 0.37 6.37 6.38
the uncertainty in the simulation due to model input 97.7
uncertainty is shown in Fig. 7-3-5. The uncertainty in the 8 97.1
simulation of each experiment and the uncertainty in 9 97.2
the simulation using average inputs from the 10 10 97.2
experiments (dashed line) and its uncertainty are shown. Average 97.2 0.10 6.37 6.37
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Fig. 7-3-5 Simulation Values of Total Heat Transfer Rate and Its Uncertainty, u,
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means that the simulation and experiment share identi-
cal error sources. The uncertain experimental variables
(Table 7-3-3) and uncertain simulation input variables
(Table 7-3-6) contain several common uncertain variables.
All uncertain parameters that impact the difference E =
S—D are listed in Table 7-3-12. The second column identifies
whether the (uncertain) parameter affects the simulation
(S), experiment (D), or both (D and S). Uncertain param-
eters that impact both are inlet bulk fluid temperature, vol-
ume flow rate, density of the fluid, and specific heat of the
fluid. For cases with common shared identical error source,
the propagation equations for the simulation uncertainty

+2 b

T:Tn,l)

(7-3-22)

"”’s) _ (%) |[(295) _ (9o
aT aTI aTo,D (aTo,D)

The general expression has been simplified for this ex-
ample. Contact conductance (k) and viscosity (u) are not
included in the simulation. Also, uncertainties associated
with the geometry (d,, d,, L, a, w, and w, ,f) are neglected.

After removing terms associated with these parameters,
eq. (7-3-22) can be simplified.

w2 -
ap ap aQ aQ

and experimental uncertainty must be combined to calcu- aq, g\ P . 99, g\ . s\ ,
late uval.."ﬂu's example i.s Case 3 m Sect%on5 and the general + acl lac e, + a_r - 6—Tl ur, + _x Ur,
expression for computing u_ is given in para. 5-3.2.1. & &
aq 2 aq 2 aq 2 aq 2 aq 2
> _[[9%s p\T > 99, Ip\1? » += uhzl + == ul’zz e u}i + = usz + = ukzy
w = )T e T oS T A e h oh oh, k k
ap ap aQ, aQ ! ! '
2 2 an ? 2 2
94 r 2 s 9, 2 ur, * U

el e I R B B N e Il B R T,
aC, aC, ’ oT, oT, ' a’q 5 5 5
0\, (o ” 0.2 o[ - (M) [|(Ys) — (o) b (7-3-23)

+ — ulz" + - )ui + — uhz + —= M;? (:)Tl (:)Tt aTG/D a’To,D ’ ’
oT.) =~ \om oh, ) " \oh)

9012 90 \2 9012 9012 There are several notable issues concerning eq. (7-3-23).
9s\" 2 95\ 2 9s\" > 95\~ 2 . .

S el I 7 ol Gl I 7l S B TPl e I T8 The first four terms and the last term in eq. (7-3-23) rep-
ahf oh, akf ok, resent the contribution from uncertain parameters
9N, (99, (9g)2 , (0902 that impact both the simulation and experimental

+ o ug + ‘Mz) ug + (_Ls) up + (8_5) U, values of the total heat transfer rate. The contribution

1 J “ of these parameters to u , depends on the difference
2 ag.\2 0. \2 in the partial derivatives from the simulation and ex-
995\ > 951" o\ > 2 . .

| uw t SW Uy + oT Ur =+ Uy periment (squared). The uncertain parameters that

Y, ) oD only impact the simulation are included in term five
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Table 7-3-12 Parameters Included in Evaluating u_, Parameter Standard Uncertainty Estimates, and
Parameter Sensitivity Coefficients
Standard Uncertainty Scaled Sensitivity Coefficients
. g, 3g,
Parameter Impact Random, s, Systematic, b, Total, u; X— W — W
X, X,
T.C0 DandS 0.07% 0.14% 0.16% 1808 141.72
T (0 D 0.07% 0.14% 0.16% —-1734 .
Q(m?/s) DandS 0.5% 1.0% 1.12% 74.9 3.91
p (kg/m?) Dand S 0.5% 0.5% 74.9 3.91
C,(J/kg"0) Dand S 1.0% 1.0% 74.9 3.91
k (W/m °C) S 5% 5% 0.015
k. (W/m °C) S 5% 5% 0.19
h, (W/m?°C) S 10% 10% 48.21
h, (W/m2°C) s 10% 10% 41.16
h,(W/m2°C) S 10% 10% 3.77
7_(0 S 1% 1% —44.53

through ten. The fourth line has a term for the uncer-
tain parameter that impacts the experiment and the
numerical uncertainty. The final term of the equation
accounts for correlated bias errors between the input
and output fluid temperatures that impact both the
simulation and experiment.

The parameter uncertainties and parameter sensitiv-
ity coefficients (from Table 7-3-4 and Table 7-3-10) for the
simulation and experiment that are required for evalu-
atiri;ﬁg u , are listed in Table 7-3-12. (Note that relative
uncertainties should be used with the scaled sensitivity
coefficients.)

The results listed in Table 7-3-13 summarize the total
heat transfer from the experiment and its uncertainty, the
simulation result and its uncertainty from input uncer-
tainty and numerical uncertainty, the comparison error,
and the validation uncertainty u_, from eq. (7-3-23). A
single value of u  is calculated and does not depend
on whether each experiment is modeled or the average
experiment is modeled. In both cases, the sensitivity
coefficients were evaluated at the average conditions of
the 10 experiments.

In this example, though the simulation and the ex-
periment have shared error sources, the magnitude of
u_, is negligibly different from the values obtained from
assuming independence and using eq. (7-3-21). This
outcome depends on

(a) the magnitude of the difference in the scaled
sensitivity coefficients in the simulation and experiment
for the shared parameters

(b) the relative importance of the shared parameters to
the uncertainty in the simulation and experiment

This outcome is problem specific and other problems
could have a larger difference.

7-3.4.2 Monte Carlo Approach for Evaluating the
Validation Uncertainty, u_. The validation uncertainty
can also be computed with a Monte Carlo approach. In
this example, the simulation and the experiment have
identical error sources and correlated errors (in the inlet
and outlet fluid temperature). This is Case 3 in Section 5,
and the procedure for evaluating u , by Monte Carlo is
discussed in para. 5-3.2.2.

Table 7-3-13 Experimental and Simulation Values of Total Heat Transfer Rate and Associated Standard

Uncertainties

Experiment q,W u, W q, W Ui W u, W E,W u,,W
1 74.0 1 97.9 3 23.9 3

2 75.6 96.7 21.1

3 75.1 97.2 22.1

4 71.4 96.8 25.4

5 72.8 97.3 24.5

. 270 2.65 96.9 6.38 0.07 109 6.69
7 79.3 97.7 18.4

8 72.1 97.1 25.0

9 75.1 97.2 22.1

10 76.2 J 97.2 J 22.3

Average 74.9 2.17 97.2 6.37 0.07 22.3 6.69
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A Monte Carlo procedure involves sampling over
range of uncertain parameters that are inputs to
the simulation and experimental data reduction
equation. The simulation model and experimental
data reduction equation are evaluated with samples
of the parameters to estimate the effect of parameter
uncertainty. A Latin hypercube sampling (LHS) pro-
cedure is applied in this Section to evaluate u . The
LHS procedure is discussed in Section 3 as applied
to the simulation model for u, , and in Section 4 for
the experimental uncertainty, u . Because the simu-
lation and experiment have shared error sources, the
sampling of parameters in the experimental data re-
duction equation and parameters for the simulation is
done jointly to evaluate u . In cases that do not share
error sources, the Monte Carlo sampling can be done
independently on the simulation and experimental
data reduction equation.

All of the parameters required for calculating the total
heat transfer rate in the experiment and simulation and
their standard uncertainties are listed Table 7-3-14. When
applying a sampling-based procedure, in addition to
specifying the standard uncertainty of each parameter,
a (probability) distribution function is required for each
parameter. For example, the uncertainty in the param-
eter might be distributed as a Gaussian function defined
by a mean and standard deviation. In most cases there is
not sufficient data to assign a distribution function and
judgment is required. For this demonstration example a
Gaussian distribution function is assigned to all inputs.
The mean of the Gaussian distribution is taken as the
nominal parameter value (averaged over the 10 experi-
ments for measured inputs), and the standard deviation
is the standard uncertainty; these values are listed in
Table 7-3-14.

Twenty LHS samples of the inputs are generated for
the example. Two of the LHS parameter sample sets
(from 20) are listed in last two columns of Table 7-3-14.
The simulation and experimental values of total heat
transfer rate, and their difference, for each of the 20

LHS parameter sample sets is given in Table 7-3-15.
The LHS samples of total heat transfer rate are also
plotted in Fig. 7-3-6. The samples of the total heat
transfer rate are analyzed with standard statistics to
get uncertainty from the LHS samples. The mean and
standard deviation are listed at the bottom of the table
for each column. The means are the nominal (expected
value) of the simulated (q,) total heat transfer rate,
experimental (q,) total heat transfer rate, and differ-
ence (E). The estimated standard deviations (of col-
umns 3, 4, and 5) are the standard uncertainties in the
simulation due to input parameter uncertainty (u,,,,),
the experimental uncertainty due to measurement
uncertainty (u,), and contributions of both these
uncertainties to u__.

The nominal values of g, and g, and their standard
uncertainty estimates computed with an LHS approach
can be compared to the previous estimates from a prop-
agation approach (in paras. 7-3.2.1 and 7-3.3.4). A fun-
damental difference between the LHS and propagation
approaches is the assumption of linearity in a propa-
gation approach, which is not necessary in an LHS ap-
proach. Some insight into the impact of this assumption
can be obtained through comparing the results of the two
approaches. The comparison is not solely due to the as-
sumption of linearity because the LHS approach has a
dependence on sample size. The comparison is shown in
Table 7-3-16. Note that in the example u_ _is of negligible
magnitude and u , only has contributions from simula-
tion input uncertainty and experimental measurement
uncertainty.

The results in Table 7-3-16 indicate that the LHS and
propagation approaches give consistent results for
the nominal total heat transfer rates and uncertain-
ties. The values for the experiment should be in close
agreement because the experimental data reduction
equation is a linear function of the parameters [see
eq. (7-3-1)]. The difference between the values from
the LHS approach and propagation equation is small
and only due to the sample size dependence for the

Table 7-3-14 Parameter Standard Uncertainty and Example Latin Hypercube Samples

Standard Uncertainty

Latin Hypercube Samples

Parameter Impact Nominal Random, s, Systematic, b, Total, u, 1 2
T.CO DandS 70.01 0.07% 0.14% 0.16% 70.183 70.116
T.(0 D 67.20 0.07% 0.14% 0.16% 67.288 67.072
Q (m3/ sec) Dand S 6.23 e-06 0.5% 1.0% 1.12% 6.334 e-06 6.265 e-06
p (kg/m?) Dand S 990 0.5% 0.5% 984.5 992.0
Cp (J/kg*C) Dand S 4180 1.0% 1.0% 4118 4211
k, (W/m"C) S 386 5% 5% 391.1 388.9
kf (W/m°C) S 204 5% 5% 239.7 215.9
h, (W/m?°C) S 150 10% 10% 140.8 160.7
h, (W/m*C) S 6 10% 10% 7.008 4.760
hf(W/mz"C) S 6 10% 10% 6.732 5.886
T7_(CO S 22.02 1% 1% 22.02 22.19
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Fig. 7-3-6 LHS Samples of Simulated and rate, with LHS estimating a larger standard uncer-

Experimental Values of Total Heat Transfer Rate tainty than the propagation approach. The consis-

tency between the LHS and propagation approaches

120 T T T addresses concerns that may arise in the applicability

O o of the linear assumption required for the propagation

approach. Agreement between the two approaches is

O as o problem specific, and the other problems may demon-
o o o strate a larger difference.

100f oo ]

m| o 7-3.4.3 Interpretation of the Validation Results. The

o o previous sections have presented the approach for

a0r u] 1 determining the comparison error E and the valida-

m] tion uncertainty u . (The experimental uncertainty

and simulation uncertainty due to input parameter

sor o (0] ] uncertainty and numerical uncertainty were also esti-

o o (e} O _o 1 . . .

O O0~0O0 o (o] 0O o0 o mated.) The validation uncertainty u _ is an estimate of

70 . Le) Q : the standard deviation of the parent population of the

5 10 15 20 combination of the errors (5 + 6inpm - 6,) where §__,,

LHS Sample Number has been excluded. The expression for §_ ., the error due

to modeling assumptions and approximations, was de-

rived in Section 1.
LHS. The simulation has approximately a linear depen- 5

dence on the parameters. The two approaches give model = £ 7 (O T 8~ 8p) (7-3-24)
the same nominal value of the total heat transfer rate,
but the estimate of the standard uncertainty is larger
(6.6%) for the LHS than that for the propagation ap-
proach. The estimates of the validation uncertainty E-u_ =6 ,=E+tu, (7-3-25)
for the two approaches are similarly consistent in the
nominal value of the difference in total heat transfer

110

q (W)
|
m}
m}
m]
m]

Thus, E + u_, defines an interval within which &
falls with an unspecified probability, or

model

The comparison is interpreted in two ways. First, with
no assumptions on the distribution of parent population
of the errors (5, + 6, ~ 8,), the magnitudes of E and
u, can be compared to make approximate inferences

about §_ . Second, by making an assumption on the
Table 7-3-15 LHS Samples for the Simulated distribution of the parent population of the errors (§_
and Experimental Values of the Total Heat + 8, ~ 8, an interval can be estimated within which
Transfer Rate 3, .. falls with a specified probability. Section 6 discusses
interpreting the validation results.
Sample Number 9 W 90 W £=4,— 9, W With no assumptions on distributions, the magnitudes
1 94.08 74.33 19.74 of E and u_ can be compared to indicate if §__,, might
2 91.58 79.66 11.92 be present. The values for E and u_ in Table 7-3-13 indi-
3 85.06 74.25 10.81 cate that E is approximately a factor of 3 larger than u_,
g 18322 ;igg ;;;; over the suite of experimenfts..A magnitude of E that is
6 9533 74.49 20.84 a factor of 3 larger than u_ is in the range that E can be
7 95.60 73.09 22.51
8 96.73 78.49 18.24
9 89.02 76.84 12.18 Table 7-3-16 Comparison of Nominal Values
10 103.17 75.00 28.16 and Standard Uncertainties Computed With the
1 99.16 71.57 27.59 Propagation and LHS Approaches
12 100.27 75.84 24.43
13 94.46 73.90 20.56 Quantity Simulation LHS Propagation
14 107.69 74.39 33.30
15 91.49 70.91 20.58 qs W 97.2 97.2
16 97.33 76.24 21.09 Uy W 6.79 6.37
17 105.41 74.12 31.28 Experiment
18 94.27 75.66 18.61 q, W 74.9 74.9
19 109.94 75.09 34.85 u, W 2.08 2.17
20 86.83 72.79 14.04 Difference
Mean 97.18 74.88 22.03 E=q,—q,W 22.3 22.3
Standard Deviation 6.79 2.08 7.03 u,, W 7.03 6.69
60

Copyright ASME International
Provided by IHS under license with ASME Licensee=Us Nuclear Regulatory Commission/9979306001
No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

directly related to §__, . Given the difference in magni-
tudes of E and u_, E probably includes a contribution
fromo__, .

By assuming a probability distribution for the
combination of all errors except the modeling error 6__, .,
an interval can be estimated within which §__,, falls. With
an assumed distribution for the combination of all errors
except the modeling error, a coverage factor, k, can be speci-
fied to define an expanded uncertainty, U, =k u , that
defines theinterval (E + U, ) withinwhich_,, withlevel
of confidence a. The magnitude of k depends on the prob-
ability distribution and level of confidence «. Magnitudes
for k are discussed in subsection 6-3 for various probability
distributions and confidence levels. For a Gaussian
distribution with a = 95% confidence level, k is 2.0. The
interval within which §_,, falls with ~95% probability,
E *+2u_,is plotted in Fig. 7-3-7. In the case that a single sim-
ulation is generated at the average conditions the dashed
line is obtained with shown bounds [10.4, 37.3]. If each
experiment were individually simulated, the variation in
the magnitude of §_, , can be observed. If the expanded un-
certainty is for a 99% probability (k = 3) the average interval
for 8. expands to [3.7, 44.0] W.

The validation procedure outlined in this document is
complete at this point. The approach in this document
is a procedure to objectively assess and quantify the ac-
curacy of a simulation. The approach resulted in an esti-
mated range characterizing the error §__, .. The question
as to whether the simulation model is adequate depends
on the accuracy required for an application. Given the
outcome or the validation procedure, however, there
may be a desire to improve the accuracy of the model

Interval for 6

model

Fig. 7-3-7

or better understand the source of §__,,. What is done
as follow-on to the validation procedure of this docu-
ment would be considered model development and not
validation. However, as will be seen, the possibility of
improving the model is informed by the validation. If
the originally assessed model is improved or modified
to include additional physics, it can be assessed with the
same procedure. The assessment of a second model with
the same experimental data is summarized in the follow-
ing section. The experimental data was not involved in
updating the model. Additional comments are provided
below on the issue of the next step after a validation
assessment.

The validation procedure can include some insight into
the possible source of §__, . Potential areas to consider
are discussed next. It would be beneficial to consider
these even if the outcome of the validation were favor-
able or acceptable.

(a) The inputs — both the nominal values and un-
certainty estimates — for the experimental data reduc-
tion equation and simulation could be re-evaluated.
The nominal inputs or uncertainty estimates may not
be applicable to the validation experiment. Importance
factors (see Nonmandatory Appendix B) identify the
relative contribution of each parameter to the uncer-
tainty in the experimental data reduction equation and
uncertainty in the simulation due to input uncertainty.
Obtaining additional data for the nominal value or un-
certainty of an input parameter identified as important
could impact §__,..-

(b) Review the adequacy of the approaches used to
propagate the uncertainties.

(E = 2uval) Assuming a Gaussian Distribution for the Errors and 95% Probability

40 - -

30 | ] .

0)

2 RO N S A i Oﬁ ]
3 | )] ) i
: 20 ) o
o)

10 | I i ) ] 1

O L L

5 10

Exponential Number
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(c) The critical assumptions that form the basis for
the selected simulation model should be reviewed.
Additional studies (through simulation and/or
experimentation) may indicate that an assumption is not
appropriate.

7-3.5 Assessing a Second Model

The initial model for simulating the total heat transfer
rate from the fin tube heat exchanger assumed perfect
contact (an infinite contact conductance, k) at the inter-
face between the tube and fin. Further investigation and
testing has shown that the contact conductance between
the fin and tube is smaller than initially believed. To in-
vestigate the effect of a finite contact conductance, the
simulated model results including a contact conductance
at the fin/tube interface are calculated. The simulation
uncertainty with contact conductance in the model is
also estimated. The validation comparison to the experi-
mental data is repeated to assess the model with a con-
tact conductance.

Once a model has been assessed and the experimen-
tal data observed, there are many ways that a model
can be updated to more closely match the experimen-
tal data. Updates to the model can be physically moti-
vated, but just because the updated model more closely
matches experimental data does not necessarily mean
the update to the model physically represents the true
8 4o Some caution must be exercised in updating a
model and the claims that can be made when the up-
dated model is assessed. The intent of this Section is to
demonstrate how the updated model can be assessed
and the outcome of that assessment. The validation ap-
proach can demonstrate whether the second (updated)
model is more accurate than the first model, but justi-
fying the appropriateness of the updates is an issue to
be discussed among the modeler, experimentalist, and
perhaps others.

7-3.5.1 Simulation Model With Contact Conductance
and Uncertainty Simulation Model. The simulation
model is the same as that discussed in para. 7-3.3, except
that a contact conductance is defined at the fin/tube in-
terface when solving for the two-dimensional heat trans-
fer in the fin-tube cross section. Instead of perfect contact
at the fin/tube interface, defined by eq. (7-3-11), a contact

7-3.5.1.1 Code Verification. The code verification
process described earlier did not include the option for
a finite contact conductance. This verification could be
accomplished, using the exact MMS solution including
contact conductance as described in Nonmandatory Ap-
pendix B. The results will not be presented here in the
interest of space.

7-3.5.1.2 Simulation Results. The simulated
values of the total heat transfer rate with a contact
conductance are listed in Table 7-3-17. As was done
previously and discussed in para. 7-3.3.2, two approaches
were taken to simulate the experiments. Each experiment
was simulated, and a single simulation at the average of
the conditions measured over the 10 experiments was
conducted. The simulation at the average conditions is
provided at the bottom of Table 7-3-17. Notice that the
magnitude of the simulated total heat transfer with a
contact conductance decreased to 73.8 W from a value of
97.2 when perfect contact was assumed.

7-3.5.1.3 Solution Verification. The simulation
model adds the effect of a contact conductance between
the fin and tube. Given the outcome of the previous
mesh refinement study in para. 7-3.3.3, and further-
more arguing that contact conductance may have a
small dependence on the mesh, the solution verification
may not need to be repeated. The previous evidence
may be convincing that the numerical error due to
mesh is negligible. In the interest of demonstrating the
approach, the solution verification process is repeated
for the second model. The same sequence of meshes
discussed in para. 7-3.3.3 is used to perform solution
verification. The results of the study are provided in
Tables 7-3-19 and 7-3-20 for the model with contact con-
ductance included.

The dependence of the simulated total heat transfer
rate on the mesh is monotonic. The estimated observed
convergence rate for the two mesh sequences is 2.0. The
uncertainty for the numerical uncertainty is negligibly

Table 7-3-17 Simulation Values of the Total Heat
Transfer Rate for the Model With Contact Conductance

. : ) Experiment qs W
conductance is defined at the interface.
o, 1 74.3
t _ - + _

- t W 75’9_ hc [Tt(rZ 7 0) - Tf (72 7 6)] - _kfa_r ,erla ; ;;;}
(7-3-26) 4 73.5
5 73.8
This is the only change in the simulation model. The same 6 73.5
parameter values and uncertainty values given in Table 7 74.1
7-3-6 are used in the simulation. The contact conductance 8 73.7
in eq. (7-3-26) is h_ = 150 W/m?°C with a standard sys- ?0 ;g:

tematic uncertainty of 20%. )
Average 73.8
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Table 7-3-18 Simulation Values of the Total Heat
Transfer Rate and the Standard Uncertainty for the

Table 7-3-19 Solution Verification Results for
Total Heat Transfer Rate for the Model With Contact

Model With Contact Conductance Conductance
Uncertainty (Standard) Mesh h-Tube (Relative) h-Fin (Relative) q, W

Experiment qs,W Sy w bqs, w Ui w 1 0.125 0.119 74.298318

2 0.25 0.239 74.297087
! 7439 3 0.5 0.477 74.292162
2 734 4 1 1 74.272587
3 73.7
4 73.5
5 73.8
6 73.5 0.28 5.18 5.19 random contribution is (over a factor of 3) larger than the
7 74.1 value from the propagation approach, the magnitude is
8 73.7 negligible compared to the systematic uncertainty.
io ;g: ) The standard uncertainty in the simulated total heat
Average 73.8 0.08 5.18 5.18 transfer rate due to input parameter uncertainty is ap-

small; the numerical uncertainty is two orders of mag-
nitude smaller than the experimental uncertainty in the
total heat transfer rate.

7-3.5.1.4 Simulation Input Parameter Uncertainty.
The uncertainty due to input uncertainty is propagated
through the simulation in the same manner as discussed
in para. 7-334. In addition to the input parameters
listed in para. 7-3.3.4, uncertainty in the contact conductance
is included. The simulation model with a contact conduc-
tance will have different partial derivatives with respect
to the parameters. The partial derivatives are numerically
calculated with the central difference approximation. The
scaled sensitivity coefficients and standard uncertainties for
the parameters are listed in Table 7-3-21. The uncertainty in
the simulation of the total heat transfer rate can be estimated
from the propagation equations in para. 7-3.3.4 using the
data in Table 7-3-21. Both the random and systematic contri-
butions to the uncertainty can be estimated.

The magnitudes of the random and systematic con-
tributions to the standard uncertainty in the total heat
transfer rate from the propagation approach are shown
in the last row of Table 7-3-18. The random contribu-
tion to the total uncertainty is negligible compared to
the systematic contribution. The random contribution
can be computed directly when each experiment is indi-
vidually simulated. The random standard uncertainty is
estimated from the standard deviation in the simulated
total heat transfer rate of the 10 experiments. This esti-
mate for the random standard uncertainty is shown near
the middle of Table 7-3-18. Although this estimate of the

proximately 6.9%. The contribution of each parameter to
the uncertainty in the simulation can be identified with
importance factors. Importance factors are discussed in
Nonmandatory Appendix B. Importance factors indicate
that the convection coefficient on the outer surface of the
tube (h,), the convection coefficient on the inner surface of
the tube (), and the contact conductance (% ) account for
99% of the simulated systematic uncertainty in the total
heat transfer rate; those parameters account for 66%, 24%,
and 9% of the systematic uncertainty, respectively.

7-3.5.2 Evaluating the Validation Uncertainty and
Interpreting the Validation Comparison

7-3.5.2.1 Evaluating the Validation Uncertainty, u, .
The validation uncertainty is evaluated with the propa-
gation equation as discussed in para. 7-3.4.1. Compared
to the final equation for 1 in para. 7-3.4.1, an additional
term is included for the uncertainty in the simulation
input for contact conductance. The propagation equation
for u , for a model with contact conductance is
e

ap ap a0 aQ

+%_%2u2+ %_%2u2+%2u2
ac) loc) |« lor) lor)] " lam)
ag. \2 a g2 0g.\2 9g.\2
+ i)u%x+ s u,lzl+ qj)u,i+ & uhz/+ As u,i
o I, ah d f) kf
0g.\2 g, \2
+ (s P+ qD) Up + Upm
k, 0 o,D, ’
9 E) 9 E
2| [ - (Y0 [[(45) — (Yol (7-327)
T, aT. | |[\oT,, aT |

Table 7-3-20 Measures of the Numerical Error and Numerical Uncertainty for Total Heat Transfer Rate for
the Model With Contact Conductance

Mesh Sequence p(observed) e, % e, % GClir., % u, W
Mesh 2 to Mesh 4 1.99 —2.636 e-4 3.520 e-4 3.522 e-4 0.01
Mesh 1 to Mesh 3 2.00 —6.629 e-5 8.837 e-5 8.839 e-5 0.003
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Table 7-3-21 Partial Derivatives of the Total
Heat Transfer Rate for the Simulation Model With
Respect to Uncertainty Model Inputs for Model With
Contact Conductance for the Average Measured

that is less than the magnitude of u . The magni-
tude of u_, computed with eq. (7-3-27) is negligibly
different from the summing the squares of the indi-
vidual contributions of standard uncertainty from

Conditions the experimental data and simulation, assuming ap-
proximate independence between the two. This is a
q Standard Uncertainty problem specific outcome and other cases may have
=, - a different outcome.
X L X Random, s, Systematic, b,
K, 0.005 5%
kf 0.06 5% . h lidati .
h 15.64 10% 7-3.5.2.2 Interpreting the Validation Comparison.
S 42.00 10% As discussed in para. 7-3.4.3, the validation can be
hfz 1.12 10% interpreted in two ways. First, by comparing the
T, —-33.79 1% magnitudes of the comparison error and the valida-
T 107.6 0.070% 0.14% tion uncertainty, approximate inferences can be made
Q 2.24 0.5% 1.0% about the presence of §_ . Noting that E < u_, the
2.24 0.5% . g oase . va
pC >4 19 magnitude of §__,, if it exists, is of the same order
W 12.81 20?% as the errors in the simulation and experimental data

o

The additional term for the uncertainty in the contact
conductance is added as the fifth term of eq. (7-3-27).

The data required to evaluate u , are listed in
Table 7-3-22. The uncertain parameters, standard uncer-
tainties, and scaled sensitivity coefficients for the experi-
mental and simulated total heat transfer rate are given
in the table.

Validation results for the simulation model with
contact conductance are given in Table 7-3-23. The
results listed summarize the total heat transfer from
the experiment and its uncertainty, the simulation re-
sult and its uncertainty from input uncertainty and
numerical uncertainty, the comparison error, and
the validation uncertainty u _ from eq. (7-3-27). The
comparison error for the simulation with contact
conductance is demonstrated to have a magnitude

(8,pu — 8p)- Second, by making an assumption on the
distribution of the parent population of the errors (5_,
+ 8mpm — 8,), an interval can be estimated within which
3, .4« falls with a specified probability. For a Gaussian
distribution with @ = 95% confidence level, k is 2.0.
The interval within which §__,, falls with 95% proba-
bility, E * 2u__, is plotted in Fig. 7-3-8. The range char-
acterizing & . is approximately [-12, 11] at the 95%
probability level.

At this point, the validation procedure indicates
the following. The model predictions are consistent
with the experimental observations for the mod-
eled uncertainty in the validation exercise. If further
improvements to the simulation model are required
for the engineering application (i.e., the application
requires a magnitude of the average error for the heat
transfer rate to be less than 11 W), the effectiveness of
any model changes cannot be evaluated with the pres-
ent experiments and present parametric uncertainties.

Table 7-3-22 Parameters Included in Evaluating u _, Parameter Standard Uncertainty Estimates, and
Parameter Sensitivity Coefficients for the Model With Contact Conductance

Standard Uncertainty Scaled Sensitivity Coefficients

. 9q, 9,
Parameter Impact Random, s, Systematic, b, Total, u, X, a0’ w X;W' w
T.CO DandS 0.07% 0.14% 0.16 % 1,808 107.55
T.(0 D 0.07% 0.14% 0.16% —1,734
Q (m3/ sec) DandS 0.5% 1.0% 1.12% 74.9 2.24
p (kg/m?) DandS 0.5% 0.5% 74.9 2.24
Cp (J/kg*C) DandS 1.0% 1.0% 74.9 2.24
k,(W/m"C) S 5% 5% 0.005
k. (W/m’C) S 5% 5% 0.06
h, (W/m*C) S 10% 10% 15.64
h, (W/m*C) S 10% 10% 42.00
hf(W/m2°C) S 10% 10% 1.12
T_(CO S 1% 1% —33.79
h (W/m?°C) S 20% 20% 12.81
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Associated Uncertainties

Experiment q, W u, W q, W Upup w u,mW E,W u,W
1 74.0 74.3 0.27

2 75.6 73.4 -2.17

3 75.1 73.7 -1.36

4 71.4 73.4 2.05

5 72.8 73.8 1.01

p 270 2.65 73s 5.19 0.01 349 5.58
7 79.3 74.1 —-5.18

8 72.1 73.7 1.61

9 75.1 73.8 -1.29

10 76.2 73.6 4 —2.43

Average 74.9 2.17 73.8 5.18 0.01 —-1.10 5.58 -

Fig. 7-3-8 Intervalforg_ ., (E = 2uval) Assuming a Gaussian Distribution for the Errors and 95% Probability for

the Model With Contact Conductance at the Fin/Tube Interface

20

10

Smodel W
o

-10

The evaluation of “improved” models will require
that the uncertainties in the experiments and the cor-
responding parameters that are utilized by the simu-
lation, be reduced through more carefully controlled

or redesigned experiments.
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MANDATORY APPENDIX |
DETAILED DEVELOPMENT OF SIMULATION EQUATIONS FOR
EXAMPLE PROBLEM

1-1  INTRODUCTION

The purpose of this Mandatory Appendix is to pres-
ent the detailed development of the simulation equations
used for the example discussed in Sections 1, 5, and 7. The
physical problem is a hot fluid flowing inside a round
tube with square fins on the outside of the tube. It is
desired to validate a model for the bulk outlet tempera-
ture, T, of the fluid flowing in the tube and for the rate of
heat transfer, g, from the hot fluid. A sketch of the physi-
cal problem is shown in Fig. 1-4-1 in Section 1.

1-2  DATA REDUCTION EQUATION FOR
EXPERIMENTAL g

An overall energy balance on the fluid inside the tube
of length, L, is

4, =D = pQC,(T,— T (1-2-1)

where
C, = specific heat
Q = volume flow rate
g, = overall heat transfer rate, W
(T, — T) = bulk fluid temperature drop (all for the hot fluid)
p = density
Equation (I-2-1) is the data reduction equation for the
overall heat transfer rate.

1-3 SIMULATION MODEL

A one-dimensional steady state lumped mass energy
balance' on a differential tube length (dz) results in

UA
(T-T)=0

dT = pC 4T
pQCnE +2mr U(T—-T) = pQCPE+ L (I-3-1)

where
L = tube length
T(z) = position dependent bulk fluid temperature

!Changes in potential and kinetic energy as well as axial heat con-
duction are ignored.
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= (constant) ambient temperature
= average overall heat transfer coefficient based
on the wetted area of the tube inner surface (A,
= 2mr L)
z = distance along tube
Before integrating eq. (I-3-1) over the length of the tube,
the details of how to calculate Ul will be discussed.

T,
ul

I-4 ASSUMED FORM FOR AXIAL VARIATION OF
OVERALL HEAT TRANSFER COEFFICIENT, U,

The overall heat transfer coefficient variation is as-
sumed in the form of a series of step functions cor-
responding to the finned and no-finned (bare tube)
sections, as shown in Fig. I-4-1. The subscripts f and nf
refer to finned and no-finned tube sections, respectively.
The axially averaged overall heat transfer coefficient is

iven b
8 Y 1 Z Uf]wf +Unf1wnf _
] U@z = —ww,— = U
where the widths w,and w,, are defined in Fig. 1-4-1 in
section 1 and

(I-4-1)

L= N(wf +w (1-4-2)

)
where
N = number of fin/no-fin segments
The subscript 1 in eq. (I-4-1) is a reminder that the
U’s are based on area A,. The task of getting U, will be
divided into two parts, corresponding to the no-fin and
fin segments.

Fig.1-4-1 Variation of Local Value of Overall Heat
Transfer Coefficient

a1

Ui (2)

Y
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I-5 OVERALL HEAT TRANSFER COEFFICIENT FOR
NO-FIN SEGMENT, u

The no-fin segment is treated as a bare tube with
convective heat transfer on the inside and outside. From
introductory heat transfer texts, the overall heat transfer
coefficient for the no-fin section (for steady one-dimen-
sional heat transfer) is given by

1
u =
i 1, rIn(r,/r))
h, 2k,

(I-5-1)
rl
h,r,
where
h, = convective heat transfer coefficients on the inside
of the bare tube
h, = convective heat transfer coefficients on the out-
side of the bare tube
k, = thermal conductivity of the tube

1-6 OVERALL HEAT TRANSFER COEFFICIENT FOR
FIN SEGMENT, U,

If the fins on the tube were circular instead of square, a
one-dimensional result similar to eq. (I-5-1) could be de-
rived analytically. However, the heat transfer in a square
fin on a round tube will be addressed using a grid based
computational (finite volume, finite element, etc.) model.

The three-dimensional simulation will include the cir-
cular tube and square fin attached to it and is shown sche-
matically in Fig. I-4-1 in Section 1. A contact conductance
between the tube and fin is allowed. The mathematical
model is given as follows:

J ( aTt) J GTt J ( aTt) _

oT oT oT
o (OTN . o [T) . o [ 9T _ .
W("m) * ay (kfa—y) oz ("fﬁ) =0fin (-62)

where the z-axis is directed along the length of the tube.
While the fin and tube thermal conductivities are written
inside the derivatives in eqs. (I-6-1) and (I-6-2) to directly
relate the terms to the local heat flux, both conductivities
are constant for this example. At the inner surface of the
tube, the boundary condition is

L

A (I-6-3)

= h, [T, — T(r, 6)]

where
T, = the bulk fluid temperature
0 = traditional polar coordinate for cylindrical geometry
At the tube/fin interface where a contact conductance
h_ may be present
oT
i

aT, )
= h[T(20) = Tfr;, )] = k7| . (1-6-4)

&, (Tt

-
where the +/— indicates the outside/inside of the tube/
fin interface. At the tip of the fin, the boundary condition
is

= 0

aT
—k—t
kfan

= I [T x,y,) = T.] (1-6-5)

Xy
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where
n = coordinate (outward) normal to the outer fin
surface
(x,, y,) = evaluated along the outer boundary of the
fin

Because of symmetry, only one-eighth of the cross
section will be modeled; the symmetry boundaries are
treated as adiabatic boundaries. The front and back sur-
faces of the fin (s) also have convection to the ambient
air, and this boundary condition is given by

HTf
Ko S/:hf( Tl T, )

Axial conduction in the tube is ignored.

The model presented in eqgs. (I-6-1) through (I-6-6) is
solved using a three-dimensional Galerkin finite element
code, and the overall heat transfer coefficient for the fin
section is computed by post processing the results. The
overall heat transfer coefficient Uf for the fin/tube sec-
tion is defined through ’

(1-6-6)

/4

g, = Umdw(T~T) = 8w, [~ h[TT(r,0)]rdo (1-6-7)
Solving eq. (I-6-7) for yields
4 R
Uf] = m fO 4}11[Tﬂ—T[(1’1,0)]d0
where T(r,6) is the temperature from the simulation, egs.
(I-6-1) through (I-6-6).

A specification of the fluid temperature T, is required
for the solution of the model given by egs. (I-6-1) through
(I-6-6). Note that T varies along the length of the tube;
however, for the linear constant property model consid-
ered here, it is argued that U, computed from eq. (I-6-8)
will be independent of the assumed value for T,

(1-6-8)

INTEGRATION OF THE ENERGY BALANCE
EQUATION

-7

In eq. (I-3-1), the variables can be separated to yield

T _U1A11 z,

o dT _ 1 -7-
JT, TT. pQCp LJZI. dz (I-7-1)
Evaluating the integrals followed by algebraic mani—
pulation yields _
T-T, _uA 1.7.2
Ti_ Tx exp chp ( T )

In subsection 5-2, the validation variable is T ; solving
eq. (I-7-2) for the validation variable yields

A
= = — — 1 Py
S=T,=T.+ (T, —T,exp pQC, (I-7-3)
The validation comparison error for this case is
E=5-D=T,-T, (I-7-4)

In subsection 5-3, the validation variable is the heat
transfer rate (4) and an expression will now be developed
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for it. Further algebraic manipulation of eq. (I-7-2) yields
a form convenient solving for the heat flux.

T-T, UA,

T-T, pQC,

Algebraic manipulation of eq. (I-7-5) yields
T,-T, pRC(T,-T) q

T,-T. pQC(T-T) pQC/(TT,)

=exp -1 (I-7-5)

1

pQC,
(1-7-6)

UAI)
= exp -1

Solving eq. (I-7-6) for the heat transfer rate yields
9. = S = pQC,(T,T.) (17-7)

exp

I
-1
pQC,,)
The validation comparison error for the heat rate case is

E=S-D=4q-q, (17-8)

1-8 EXPERIMENTAL SET POINT

The set point in the experiment is the dimensionless
flow rate (Re) and is given by

_ ple _ 4pQ

Re m —Trdlﬂ

(1-8-1)

where
V = average velocity for the fluid inside the tube
p = fluid density for the fluid inside the tube
u = dynamic viscosity for the fluid inside the tube

1-9 SUMMARY OF SIMULATION PARAMETERS

The parameters in this example can be divided into the
categories of measured (in this experiment) and database
(or handbook) values.

Measured:*Q, T,,T,T ,d,, d,L,a, W, W, (1-9-1)
Database: p, u, Cp, kj, k, h,h,h, hf (1-9-2)

1-9.1 Nomenclature

A, = 2mr L, wetted tube inner area

A, = 2mr,L, wetted tube outer area

a = fin width

C, = specific heat of fluid inside tube
D = data

d, = inner tube diameter

d, = outer tube diameter

E = validation error

h = heat transfer coefficient

21t is easier to measure a diameter, d, than a radius, r, so diameter
will be treated as the measured value.

Copyright ASME International
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T ™ N

= heat transfer coefficient, inside of tube

= heat transfer coefficient, outside of tube
= contact conductance at fin/tube interface
= heat transfer coefficient, fin surface

= thermal conductivity

= fin thermal conductivity

= tube thermal conductivity

= tube length

= number of fin/no-fin sections

= volumetric flow rate

= heat transfer rate

= heat transfer rate from data

= heat transfer rate from simulation

= Reynolds number, 4pQ/(nd, w)

radius

inner tube radius

outer tube radius

temperature

bulk fluid temperature, see eq. (I-6-3)
inlet bulk fluid temperature

outlet bulk fluid temperature

ambient temperature

overall heat transfer coefficient based on A,
= overall heat transfer coefficient for fin, based on A,

= overall heat transfer coefficient for no-fin, based
onA,

average fluid velocity in tube

= width of fin sections

width of no-fin sections

= coordinates on outer boundary of fin

= axial coordinate

= angular position

= fluid density

= fluid dynamic viscosity
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MANDATORY APPENDIX I
NOMENCLATURE

= grid level subscripts, with 1 indicating the
finest grid in a sequence

= wetted area of the tube inner surface

= wetted area of the tube outer surface

= edge length of fin

= regression coefficient

= regression coefficients

= problem domain

= area of element i

= systematic standard uncertainty

= volumetric specific heat (pCp)

= specific heat

= complex step

= experimental data value

= inner tube diameter

= outer tube diameter

= direct numerical simulation

= validation comparison error

= error in dimensionless or dimensional form
(defined in context)

= error in the solution from the code

= finite difference

= discrete solutions

= analytical solution

= code solution for that mesh

= limit of fine resolution (in the absence of

round-off error)

factor of safety

grid convergence index

measure of discretization/grid spacing/mesh

or grid size

convective heat transfer coefficient on the

inside of the bare tube

convective heat transfer coefficient on the

outside of the bare tube

= contact conductance

= convective heat transfer coefficient on the fin
surface

= heat transfer coefficient, fin surface

= convective heat transfer coefficients
verification example problem

= higher-order terms

= importance for parameter X,

in

k = coverage factor

= thermal conductivity

= expansion factor

= fin thermal conductivity

= tube thermal conductivity

L = tube length/nonlinear operator/slab thickness

L, norm = integral of the error over the problem domain

LES = large eddy simulation

LHS = Latin hypercube sampling

M = manufactured /nontrivial exact analytical solution

MMS = method of manufactured solutions

N = total number of cells used for computation/
number of samples/number of fin/no-fin
sections/second manufactured solution

n = number of nodes

N, = number of grids

1,46 = number of LHS samples

n, = number of parameters

p = apparent/observed order of the method /pressure

Q = volumetric flow rate/source function

Q(r,6) = spatially varying source term

q = heat flux/heat rate

q, = heat transfer rate from data
q, = normal heat flux
qs = heat transfer rate from simulation

R = contact resistance

= Richardson extrapolation

= Reynolds number

= root-mean-square

r = result/ratio of grid spacing/radial coordinate
= inner radius of the tube

t, = outer radius of the tube

simulation solution value

sensitivity equation method

random standard uncertainty

= temperature

= true value

= time

= bulk fluid temperature

= final time

initial or inlet bulk fluid temperature
outlet bulk fluid temperature

= fin temperature
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= tube temperature

ambient air temperature
standard uncertainty
axially averaged overall heat transfer coefficient

= standard uncertainty in the experimental data

value

overall heat transfer coefficient for fin, based
on A,

overall heat transfer coefficient for no-fin,
based on A,

standard uncertainty contributed by the
discretization

standard uncertainty contributed by the
(estimated) iteration error

standard uncertainty in the simulation
solution value due to errors in the simulation
inputs

standard wuncertainty in the simulation
solution value due to the numerical solution
of the equations

= validation standard uncertainty

expanded uncertainty for % level of
confidence

axial velocity

dependent variable

chosen/specified /exact solution

thickness of the fin

distance between fins on the heat exchanger

LRSS ORS

(Pext ’fext

= input parameters

numerical uncertainty in X

position coordinates

thermal diffusivity or other diffusion coeffi-
cient

time discretization

volume of cell

perturbation in parameter X,

space discretization

error

error in the experimental data value

error in the simulation solution value due to
errors in simulation inputs

error in the simulation solution value due to
modeling assumptions and approximations
error in the simulation solution value due to
numerical solution of equations

error in the simulation solution value
emittance/error estimate

change in solution variable over grids 2and 1,
3, and 2, respectively

fluid dynamic viscosity

polar coordinate for cylindrical geometry
density

standard deviation of parent population
dimensionless analytical solution/numerical
solution

extrapolated values of ¢, f
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NONMANDATORY APPENDIX A
METHOD OF MANUFACTURED SOLUTIONS FOR THE
SAMPLE PROBLEM

A-1 INTRODUCTION AND RATIONALE

As described para. 2-3.3, the method of manufactured
solutions (MMS) provides a methodology for code veri-
fication that has been successfully demonstrated in a va-

The coordinate r (dimensionless) varies from r = 1
to some r__, and 6 from 6 = 0 to 6 = w/4. Symmetry
requires T, = 0 at surfaces 3 and 4.

The governing equation is

riety of PDE codes. For complex models involving much V-kVT =0 (A-2-1)

chain-rule differentiation, computer symbolic manipu-

lation is recommended for evaluating the source term Q. rai [rkT] + % [kT,] =0 (A-2-2)
r T

For this detailed sample problem, we restrict ourselves
to the generation of manufactured solutions (MS) that
are simple and can be easily confirmed by hand calcula-
tions. Using symbolic manipulation, more generality in
the MS could be used, and more general code features
could be exercised in the code verification.

Step-by-step developments are given in egs. (A-2-2) and
(A-2-3), with some further discussion given in eq. (A-2-4).
For those readers interested only in the results, these are
summarized in section A-5.

A-2 MMS #1: 2-D, NONLINEAR CONDUCTION,
. SINGLE MATERIAL

The problem geometry and boundary labeling are
shown in Fig. 7-2-1 of Section 7. This single-material
problem will be defined from r = 1 outward, in the
fin region. Note the tube outer radius is at r = 1. All
equations are dimensionless. Symmetry gives zero heat
flux = 0 at surfaces 3 and 4.

Cartesian or any coordinates could be used to define
the MS, but the specific problem symmetry suggests
polar coordinates. This choice will allow us to build
in zero-flux boundary conditions at surfaces 3 and 4,
and allow simple evaluation of the fluxes at surfaces
1and 2.

NOTE: The MS will be constructed in polar coordinates, but the
FEM code being verified will not use this coordinate system; the
solution and its expression are two different entities. Likewise,
although the solution will be developed in nondimensional
variables, the code could use these or dimensional variables; it
is only necessary to convert the MS to the dimensions used in
the code (or vice versa).

72

To obtain convenientanalytical manufactured solutions
without using symbolic manipulation, it is assumed that
the conductivity k varies linearly with temperature.

k=K+ST (A-2-3)

where K and S are constants. (Note again that all terms
are dimensionless and consistent.) This governing PDE is
written in (nonlinear) operator form.

L(r,6,T) =0 (A-2-4)

L(r, 0, T) = r% [r(K+ ST)T] + % [(K + ST)T,] (A-2-5)
Expanding,

L(r, 6, T) = r[KT + KrT + STT + SrT* + SriT ]
+[KT,,+ ST?,+ STT,] (A-2-6)

An analytical form for the manufactured solution
T(r, 8) = M(r, 6) is chosen, such that the zero flux
condition T, = 0 is met along surfaces 3 and 4, at
6 = 0 and w/4. The form is also chosen for simplicity of
evaluating derivatives while ensuring that all derivatives
of all order exist and are nonzero except at the zero-flux
boundaries. The chosen form is

M(r, 6) = ¢ cos(46) (A-2-7)

The MS form is not chosen for realism. (A more appeal-
ing “realistic” form might use e”, but would slightly com-
plicate the derivative evaluations without adding value
to the code verification exercise.)

Then the MS source term Q(r,0) is evaluated by
passing the solution M(r,6) through the operator L [i.e.,
substituting M from eq. (A-2-7) for T into L of eq. (A-2-6)].
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The required derivatives are readily evaluated and sim-
ple in form.

M(r, 6) = ¢ cos(40) = M(r, 0) (A-2-8)
M (r, 6) = M(r, 6) (A-2-9)
M,(r, 0) = —4e’ sin(40) = —4tan(40)M(r,0) (A-2-10)

M,(r, 6) = —16¢" cos(46) = —16M(r,0) (A-2-11)

This produces the modified equation to be solved in
the code verification exercise.

L(r, 0) = Q(r, 6) (A-2-12)
Q(r, 0) = r[KM + SM2] + 12 [KM +2SM?]
—16{KM + SM[1—tan’(46)]} (A-2-13)

The exact solution for (normal, dimensionless) heat
flux on surface 1 (at r = 1, the outer radius of the tube) is

q.],(r, 0 = —kT = —(K + ST)T. = —(KM + SM?)
(A-2-14)

Surface 2 does not align with either coordinate of the
MS description. At surface 2, the heat flux can be written
in Cartesian coordinates aligned in the normal direction
n, positive outward. At a point (r,6) on the surface 2,

0.1, (r, 6) = —KT = —k [Tcosf —~ T sin6] ~ (A-2-15)

Using the MS derivatives from egs. (A-2-8) and (A-2-10)
the (dimensionless) heat flux is given by

q,1, (@ 0) = —(K+ SM)[M cosf + %M tan46 sin6)
(A-2-16)

The boundary conditions at surfaces 1 and 2 used in
the code are taken from the MS, for whatever conditions
are being verified. Specified function (Dirichlet) or gra-
dient (nonhomogeneous Neuman) boundary conditions
are straightforward, as indicated above in eqs. (A-2-8),
(A-2-9), (A-2-10), and (A-2-11). Convective heat flux
boundary conditions are of more interest. These must
match the Newtonian heat transfer determined by the
convective heat transfer coefficients /. and & . This can be
met by specifying either spatially varying h or spatially
varying fluid or air temperatures T, and T . All of these
conditions are physically unrealistic, but this is of no
consequence to the mathematics of code verification. The
implementation of user-specified constant /’s is of most
interest for code verification, so we will specify varying
T, and T,_. Note that no physical laws are violated, but
some code flexibility is required. Newtonian heat trans-

fer gives heat flux g ~ AT or
q(r, 0) = h(r, 6) AT (A-2-17)

At surface 1, the coefficient /, is specified. Then Newto-
nian heat transfer gives
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Tf (1’, 6) =4, | 1 (7’, 0)/hi(rl 0) + M(T, 6) | 1 (A_2_18)
Likewise at surface 2,
Tx (7’, 0) =4, |2(1’, 6)/1/10(7’, 6) + M(rl 9) | 2 (A_2_19)

The simplicity of the chosen MS could conceivably
miss a particular and unlikely coding error. Since the MS
is such that M, = M_= M, an error in a code using polar
coordinates such that T  was used where T was required
(or T for T, etc.) would not be detected. In the present
situation, this unlikely situation is avoided because

(a) the code does not use polar coordinates

(b) the second MS would detect even that situation

The occurrence of negative temperatures is of no con-
sequence, mathematically or physically, for a conduc-
tion problem. However, some heat conduction codes are
set up to allow only absolute temperatures > 0 to avoid
problems in radiation terms (not considered herein). If
this is a difficulty, a simple additive T, can be used to
ensure all T > 0.

A-3 MMS #2: 1-D, LINEAR CONDUCTION, TWO
MATERIALS WITH CONTACT RESISTANCE

The problem geometry and boundary labeling are
shown in Fig. 7-2-1 of Section 7. This dual-material prob-
lem will be defined from r = r, outward. The tube region
extends from the inner tube radius r = r, to the outer tube
radius at # = 1. The fin region extends from the material
interface at the outer tube® radius r = 1 tosome r__.

In this second MS, in addition to verifying the treat-
ment of two materials with contact resistance, the code
treatment of the convection from the fin will be verified;
the code parameter /2, > 0. Note that a “glass box” phi-
losophy of code verification is being used [1-5] [i.e., it is
recognized and utilized that, except for highly contrived
counter-examples, an error made in the coding of con-
vection conditions will exhibit itself in a constant con-
ductivity problem as well as in a variable conductivity
problem, since there is no coupling between the convec-
tion term and the coefficients in the variable conductiv-
ity (Kand Sin k = K + ST)]. Also, since the convection
heat transfer depends only on local temperature and not
on 6-derivatives, a convenient MS with no 6-dependency
may be used. If either such subtle coupling is possible,
then a more complete MS would be required [1-5]. The
present problem will test unlikely coupling between
convection and contact resistance.

All equations in this section are dimensionless, and
the same reference (normalizing) dimensional quanti-
ties must be used in both regions. For example, if the
dimensional conductivities in the tube and fin regions

*Note that the outer radius of the tube is at = 1 for both Prob-
lems #1 and #2. Surface 1 is at r = 1 for Problem #1 (single material)
and surface 1is at r = r, < 1 for Problem #2 (dual material).

Licensee=Us Nuclear Regulatory Commission/9979306001
Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

are K, and K, we can use either one to obtain nondimen-
sionalized conductivities k, and kf but the same K must
be used for both.

k,=K/K =1 and k=K/K

or (A-3-1)
k,=K/K, and k=K/K=1

Symmetry gives zero heat flux = 0, thus T, = 0 at sur-

faces 3 and 4. The governing equation is

VAVT+Q, =0, k=k or k

. (A32)

T +/T,=0 (A-3-3)

where Q_ is the convective heat transfer (per unit area
of the fin) from the fin to the air at T . By definition of the
convection heat transfer coefficient hf,

Q.= h(T~T)
The governing PDE is written in (linear) operator form

L(r,6) =0 (A-3-5)

(A-3-4)

L(r,6) =T + rT, + h(T—T.) (A-3-6)

where h,= 0 in the tube region.

The manufactured solution is chosen as the composite
of two functions, M in the tube region and N in the fin
region,

Solution = M U N

M(r, 6) = e
N(r,0) = Ae"+ B

(A-3-7)
(A-3-8)

Then the MS source terms Q(r,8) in the tube and fin
regions are evaluated by passing the solutions M(r,0)
and N(r,0) through the operator L [i.e., substituting M
from eq. (A-3-7) and N from eq. (A-3-8) for T into L of eq.
(A-3-6)]. The required derivatives are readily evaluated
and simple in form.

M(r,6) = & = M(r,0) (A-3-9)
M (1,6) = ¢ (A-3-10)
N (r,6) = Ae (A-3-11)
N (r,6) = Ae’ (A-3-12)

This produces the modified equation to be solved in
the code verification exercise.

L(r, 6) = Q(r, )

where Q is a composite of two source terms defined in
the tube and fin regions,

Qo) |,=1+re

(A-3-13)

(A-3-14)
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Q(r, 6) |f: Al + r)er + the’ + th

A-3-1
=A(L+ 7+ h)e + 1B (A=3-15)

Note there is no requirement on smoothness of Q at
the interface.

The MS values for the heat fluxes are evaluated as in
MMS #1, noting that all T,and T, = 0, and that M for this
problem has the same r-functional form as MMS #1 but
with S = 0. So heat fluxes at surfaces 3 and 4 are zero.
The exact solution for normal heat flux at r = 1, the outer
radius of the tube (not surface 1 but r = 1) follows. Note
thate| _ =e=271828..

q,1,r,0)=q.|,_ (0 =—ke e=271828..

(A-3-16)

The (normal) heat flux on surface 1 (at r = r, the inner
radius of the tube) is

q,],(r, 0) = —k,ei (A-3-17)
The (normal) heat flux at surface 2 is
q,1,(r, 0) = —k Ae cos(6)
? ! (A-3-18)

—ke cos(6)
The presence of k, in the last form may be unexpected,
and results from the particular MS.

A-3.1 Interface Flux Condition

Asnoted earlier, the constants A and B are not arbitrary
but are determined by the interface conditions. Continu-
ity of heat flux across the interface is enforced; otherwise,
the source term Q would require a Dirac delta function.
This continuity requires

tube q,|,(r, 0) =finq,|,(0)  (A-3-19)

kTl _,(n6)=KT |, _, (A-3-20)

(The generality k, > kf is retained in this Section for
possible future reference.) For the composite MS,

kM,(1,60) = k.N,(1,6) (A-3-21)
kexp(1) = kaexp(l) (A-3-22)
A=k, / kf (A-3-23)

A-3.2

The temperature jump across the interface is deter-
mined by the contact resistance R, = 1/h_. The jump in
temperature at the interface is denoted by 6T and is eval-
uated by definition of the interface contact resistance, R

8T = [q.| R,

Interface Jump Condition

e

(A-3-24)
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where g_is the heat flux at the interface. This q_can be
evaluated at either the tube or fin side. With the chosen
(nonrealistic) form of the MS, T > 0 throughout, and

Tf > T, at the interface. Thus,
Tf | =T, + 6T (A-3-25)

Evaluating the flux on the tube side (for its simpler
form there) gives

Tf |.=T,| +kT| o (A-3-26)

For the MS on the tube side,
N| =M+ RkM |, (A-3-27)
Aexp(l) + B = exp(1) +R kexp(1)  (A-3-28)

B=eX(1—A+Rk)=eX(1—k/k+Rk), e=271828..
(A-3-29)

Note again that all the k’s are dimensionless.

Note that for the degenerate case of kt =k and R =0,
the correct conditions of A = 1 and B = 0 are obtained
(i.e. the fin solution N is just a continuation of the tube
solution M). Also, a meaningful solution is obtained for
the tube and fin made of the same material (k, = kf) but
still with a nonzero contact resistance.

For kr/kf =1, then
A=1, (A-3-30)
B=eRk, e=271828..

A-4 FURTHER DISCUSSION

The 1-D MS for the second problem is here expressed
in a two-component polar (r, 6) system. If the discreti-
zation system of the code being verified were based in
polar coordinates, this 1-D form solution would not
exercise multidimensional discretization (except for
boundary derivatives at surface 2). However, for the
FEM code being tested here, and any code (FEM, FVM,
FDM, pseudo-spectral, etc.) for this problem geometry
that uses boundary fitted coordinates or an unstructured
mesh, 7 is not a preferred direction. The code will in fact
evaluate nonzero multidimensional derivatives for any
nonzero finite mesh resolution. The FEM discretization
will be exercised in both r and 6. Discrete solutions will
not be 1-D, because the mesh/coordinate system does
not exhibit the polar symmetry of the solution. Only as
A — 0 will the 6-dependency — 0. This provides another
metric for mesh convergence. The exact value for T, and
T,, = 0. The convergence of the computed T, and T,, — 0
can be monitored and should converge at the expected
rate; e.g., for a second-order method, we should find

calulated T, = errorin T, = CA” (A-4-1)
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for a p-th order accurate method (p = 2 for second-order).
As A — 0, C should — constant. This is typical of all sym-
metry problems. If the symmetry is not along a coordi-
nate used in the code to describe the problem, the discrete
solutions will not exhibit symmetry except as A — 0.

The approach taken here of breaking the code verifica-
tion MMS into two problems is the same as that recom-
mended for verifying codes for supersonic viscous flows
[1, 3]. Instead of doing it all in one problem, two MS are
constructed. The first MS is a compressible but fully sub-
sonic solution designed to test the viscous terms including
turbulence models, mass conservation, etc. — everything
except the shock capturing. The second MS is more lim-
ited and only tests the shock capturing algorithms using
constant properties, no turbulence, and simple geometry.
Something must be known about the structure of the al-
gorithm, code, and problem to justify this segmentation.
Shock capturing algorithms typically do not interact with -
these other discretizations. The same approach is used to
segregate the verification of chemistry, radioactive decay, -
etc. and is easily justified because these terms do not in- :
volve spatial derivatives [1-3]. :

The choice of 2-D governing equations for the simula- .
tion code has been made. Implicitly, it is assumed that -
the fin is thin, in the sense that conduction is primar- .
ily in the plane of the fin, and temperature variation :
through the fin thickness is ignored. The MMS modeling
choices also include the assumption that any convection
from the fin tip is negligible compared to convection from
the planar fin surfaces. (This feature is assumed to be
verified in customary non-MMS tests.) Whether these are
good approximations or not, they are modeling approxi-
mations rather than numerical approximations. That is,
the errors introduced by these approximations are not or-
dered in A; the errors do not — 0 as A — 0, and therefore
their significance will not be revealed by code verification
exercises based on MMS or any other exact solutions of
these modeled equations. It is not an issue of code verifi-
cation (i.e., code correctness), but of modeling.

A-5 SUMMARY OF MANUFACTURED SOLUTIONS

A-5.1 Summary of MMS #1: 2-D, Nonlinear
Conduction, Single Material

This single-material problem is defined from r = 1 out-
ward, in the fin region. Note the tube outer radius is at r
= 1. All equations in this section are dimensionless. Sym-
metry gives zero heat flux = 0, thus T, = 0 at surfaces 3
and 4. The governing equation is

V-kVT =0 (A-5-1)

d 9d
L [rkT] + =[kT,] = 0 A-5-2
w A s L (A-5-2)
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The conductivity k is assumed to vary linearly with
temperature.

k=K+ST (A-5-3)

where K and S are constants. The governing PDE is
written in (nonlinear) operator form

L(r,0) =0 (A-5-4)

L(r, ) = r[KT + KrT,+ STT + SrT?+ STT, |
+[KT,,+ ST?,+ STT (A-5-5)

06]

The manufactured solution is chosen (not for realism) as
M(r, 6) = e" cos(46) (A-5-6)

This produces the modified equation to be solved in
the code verification exercise,

L(r, §) = Q(r, 6) (A-5-7)
Q(r, 6) = r[KM + SM?] + 7> [KM +2SM?]
—16{KM + SM[1—tan2(40)]} (A-5-8)

The exact solution for (normal) heat flux on surface 1
(at 7 = 1, the outer radius of the tube) is

q.|,(r, ) = —(KM + SM?) (A-5-9)

and (normal) heat flux at surface 2 is

q,1,(r, ) = —=(K+ SM)[M cosb + %M tan46 sin6)]
(A-5-10)

The boundary conditions at surfaces 1 and 2 used in
the code are taken from the MS of eq. (A-5-7), for what-
ever conditions are being verified. Specified function
or gradient boundary conditions are straightforward
(T=M,T =M, etc.). Convective boundary conditions
use specified convection coefficients i, and i with spa-
tially varying ambient temperatures. At surface 1,

T.(r,6) =g, |,(r, 0)/h(r, 6) + M(r, 6) |, (A-5-11)
At surface 2,

T, (r,0) =q, |, 0/h(r, 6+ M, 0)], (A-5-12)

A-5.2 Summary of MMS #2: 1-D, Linear Conduction,
Two Materials With Contact Resistance

This dual-material problem is defined from r = r, out-
ward. The tube region extends from the inner tube radius
r = r, to the outer tube radius at » = 1. The fin region ex-
tends from the material interface at the outer tube radius
r=1tosomer .

All equations are dimensionless, and the same refer-
ence (normalizing) dimensional quantities must be used
in both regions.

The governing PDE is written in (linear) operator
form

L(r,0) =0 (A-5-13)

L(r,6) =T + rT,+ h(T—T,) (A-5-14)

where h, = 0 in the tube region. The manufactured
solution is chosen as the composite of two functions, M
in the tube region and N in the fin region,

Solution = MU N

M(r, ) = e (A-5-15)

N(r,0) = Ae’'+ B (A-5-16)

The constants A and B are not arbitrary but are deter-
mined by the interface conditions on continuity of heat
flux and the temperature jump determined by the con-
tact resistance R .

A=k /k (A-5-17)

B=eX (1-k/k+R /k), e=271828.. (A-5-18)

This produces the modified equation to be solved in
the code verification exercise,

L(r, 6) = Q(r, )

where Q is a composite of two source terms defined in
the tube and fin regions,

Qo) |, =1 +re

(A-5-19)

(A-5-20)

Q. O)|,= A1 +r+h)e+hB  (A-521)

The exact solution for (normal) heat flux at r = 1, the

outer radius of the tube (not surface 1 butr = 1) is
q.1,0r,0)=—ke e=271828.. (A-5-22)

The (normal) heat flux on surface 1 (at v = r, the inner
radius of the tube) is

q,],(r, 0) = —k,er (A-5-23)
The (normal) heat flux at surface 2 is
q,,(, 0) = —kae’ cos(6) (A-5-24)
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NONMANDATORY APPENDIX B
IMPORTANCE FACTORS

B-1 INTRODUCTION

Since computational simulations may contain a large
number of parameters, it is desirable to have a metric to
rank order the importance of these parameters. For the
less important parameters, database values may be more
than adequate. For the more important parameters, it may
be necessary to conduct separate experiments to reduce
their contribution to the overall simulation uncertainty.
The method chosen for determining the parameter im-
portance will depend on the technique used to propa-
gate uncertainty through the simulation. Methods for
estimating parameter importance will be presented here
for the mean value and sampling methods presented in
Section 3.

B-2 IMPORTANCE FACTORS FOR SENSITIVITY
COEFFICIENT (LOCAL) METHOD FOR

PARAMETER UNCERTAINTY PROPAGATION

For the local sampling method, importance factors
logically follow from the basic uncertainty propagation
result, eq. (3-2-1) for uncorrelated parameters. This equa-
tion can be written as

BTN
ui%\put = (X ﬁ_x

! X, X,
where u, = X, is the relative standard uncertainty in
parameter X, and X, in the nominal parameter value; it is
common practice to specify the relative uncertainty, par-
ticularly when expert opinion is being used. The terms
X, dS/ dX, are often called scaled (not dimensionless) sen-
sitivity coefficients and have the units of simulation S.
If eq. (B-2-1) is divided through by u?__ , one obtains

L fx, 08 Dy L [g 08 T
Z’li%'\put ' 8X1 X] ’ 2 X

The importance factor for parameter X; is simply

uiiput HOX, X;

L[ s
X, X,

2
2

+.. (B-2-1)

1
uZ

input

1= (B-2-2)

IF, = (B-2-3)
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The importance factor for parameter X, represents the

fractional contribution of parameter X; to uz.mput (not u.mpm).

IMPORTANCE FACTORS FOR SAMPLING
(GLOBAL) METHOD FOR PARAMETER
UNCERTAINTY PROPAGATION

B-3

For the sampling (global) method, uncertainty was es-
timated using standard statistical processing techniques
for the various realizations of simulation S; explicit com-
putation of sensitivity coefficients was not required.
Consequently, in order to use eq. (B-2-3) to compute im-
portance factors for a sampling method, some method
must be used to first compute sensitivity information. A
common approach is to assume a linear relationship be-
tween simulation S and parameters X; of the form

S=a,+2 aX (B-3-1)
j=1
where the a/s are regression coefficients; this relationship
assumes the parameters are uncorrelated. The term
“surrogate” or “response surface model” is often
applied to eq. (B-3-1). The sensitivity of the simulation
S to changes in the parameter X, can be obtained by
differentiating eq. (B-3-1) with respect to the parameter
of interest, yielding
95 _
=g,
ax, '

This first-order (in parameters) surrogate or response-
surface model of the sampling method results gives
global sensitivities that are analogous to the local sensi-
tivity coefficients obtained using finite differences. Using
the sensitivity coefficients computed from eq. (B-3-2), the
importance factors can be computed from eq. (B-2-3).

Standard techniques can be used to compute the
regression coefficients in eq. (B-3-1). However, a word
of caution is appropriate. Since the sensitivity coeffi-
cients have units associated with them, they may vary by
orders of magnitude. For example, the volumetric heat
capacity and thermal conductivity of 304 stainless steel
at room temperature are approximately 3.7 x 10¢ ] m?® K
and 14.5 Wm™ K7, respectively. This magnitude disparity

(B-3-2)
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can be accommodated if the regression equation is writ-
ten in the form

S =a + E / Xﬂj] (B'3'3)
]
j=1 T X]

and . = Xja]. is solved for directly. For one example prob-
lem, this approach improved the conditioning of the linear
regression equations by reducing the condition number
(see reference [1] for a definition) from 4 x 10" to 8.9 x 10°.

Once the scaled sensitivity coefficients are determined
from the linear regression analysis, the importance fac-
tors can be calculated from eq. (B-2-3). A higher-order
regression analysis can be performed in conjunction with
sampling methods, but additional samples are likely to
be required.

B-4 COMPARISON BETWEEN LOCAL AND GLOBAL
IMPORTANCE FACTORS

Importance factors will now be computed for the con-
stant heat flux example problem presented in Section 3,
using both local and global methods. For the global sam-
pling method, the linear response surface method given
by eq. (B-3-1) was used with the 10 LHS runs (FD code,
11 nodes) to compute scaled sensitivity coefficients, and
these results are shown in Fig. B-4-1. For comparison pur-
poses, the second order finite difference method results
given by eq. (3-2-4) are also shown. The results from the
two methods for computing the sensitivity coefficients
(both using finite difference discretization on the same
grid) agree quite well. The agreement for the heat flux, g,
is the best because the model is linear in g.

Fig. B-4-1 Scaled Temperature Sensitivity Coefficients at z/L = 0 for Constant Heat Flux Problem Using
Mean Value and LHS With Linear Response Surface Model
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GENERAL NOTE: The runs were made with a numerical code (finite difference with 11 nodes).
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Fig. B-4-2 Comparison of Importance Factors for Constant Flux Example (z/L = 0) as Obtained From
Mean Value and LHS With Finite Difference (11 Node) Solution
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The importance factors, as defined by eq. (B-2-3), have
also been computed for this example problem using
the above two methods, and the results are shown in
Fig. B-4-2; the results are very consistent. The uncertainty
in the heat flux is by far the dominant contributor to the
overall uncertainty.

B-5 SUMMARY

A sensitivity coefficient based method for comput-
ing importance factors has been presented for both
local and global uncertainty propagation methods. The
numerical results for the constant heat flux example
problem are very consistent for these two uncertainty
propagation methods; an extension of this conclusion

80

to a specific problem should be justified by additional
calculations. One should not focus too much attention
on the magnitude of the differences in the two meth-
ods but instead should focus on the fact that the rank
ordering is the same for both methods. If one wants to
reduce u, . for the example problem, then reduction
in the uncertainty in the heat flux will be much more
fruitful than reductions in the uncertainty in the other
two parameters. Information like importance factors
is one of the most important things that comes from a
computational uncertainty analysis.

Both of the wuncertainty propagation methods
presented used the relative contribution to the variance
as the importance factor. Alternative importance factors
are discussed in reference [2].
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B-6 REFERENCES L =slab thickness
) . n ~ =number of parameters

[1] Gerald, C. F. and Wheatley, P. O., Applied Numerical ~ ¢"  _ gimulation result
Analysis, Addison-Wesley, Reading, MA, 5th ed., 1985. u  =standard uncertainty in simulation result S

[2] Helton, J. C. and Davis, F J., “Latin Hypercube 1, =standard uncertainty in parameter X
Sampling and the Propagation of Uncertainty in Analyses X, = parameter i
of Complex Systems,” Reliability Engineering and System X, = nominal value of parameter i
Safety, Vol. 81, 2003, pp. 23-69. z = distance below heated surface

B =ZXp

B-7 NOMENCLATURE
a,; a, = regression coefficients
IF, = importance factor

Copyright ASME International

Provided by IHS under license with ASME Licensee=Us Nuclear Regulatory Commission/9979306001
No reproduction or networking permitted without license from IHS Not for Resale, 04/27/2011 10:46:35 MDT



ASME V&V 20-2009

NONMANDATORY APPENDIX C
ADDITIONAL TOPICS

C-1 INTRODUCTION

This Appendix covers some additional topics that,
although important to V&V, do not easily fit the flow of
the main document. The topics, which are covered pro-
ceeding from code verification to calculation verification
to validation and calibration, are as follows:

(a) Other Applications of the Method of Manufactured
Solutions

(b) Solution Verification with Adaptive Grids or Zonal
Modeling

(c) Least Squares GCI

(d) Far-Field Boundary Errors

(e) Specific and General Senses of Model

(f) Parametric and Model Form Uncertainties

(g) Validation Experiments

(h) Level of Validation vs. Pass/Fail Validation

(i) Numerical Calibrations

C-2 OTHER APPLICATIONS OF THE METHOD
OF MANUFACTURED SOLUTIONS

Although any new application of MMS will obviously
require some thought and will likely result in new
insight, the MMS is a mature methodology. It already has
been applied to a wide range of problems, including fluid
dynamics from Darcy flow through hypersonics, shock
waves, several turbulence models, reacting chemistry,
radiation (gray and spectral), simple structures prob-
lems, 3-D time-dependent free surface flow, groundwa-
ter flow with variable density, nonlinear electric fields of
laser electrodes, elliptic grid generation, laser-initiated
electric discharge, particle tracking, and even eigenvalue
problems. Singularities provide not a challenge but an
opportunity; the convergence performance of a code and
algorithm can be systematically evaluated for different
singularity forms such as 1/, 1/7% In (r) by incorporat-
ing these into the manufactured solution. The wealth
of potential applications is not an indication of an early
stage of development of the method, but of its power. See
references [1-5] for further details and the history of the
MMS method.

The MMS procedure detects all ordered errors. It
will not detect coding mistakes that do not affect the
answer obtained (e.g., mistakes in an iterative solution
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routine that affect only the iterative convergence rate).
In the present view, these mistakes are not considered as
code verification issues, since they affect only code effi-
ciency, not accuracy. Likewise, MMS does not evaluate
the adequacy of nonordered modeling approximations
such as distance to an outflow boundary. The errors of
these approximations do not vanish as i — 0, hence are
“nonordered approximations.” The adequacy of these
approximations must be assessed by sensitivity tests that
may be described as “justification” exercises [1].

It is usually best to generate the manufactured solution
in original (“physical space”) coordinates (x, y, z, t). Then
the same solution can be used directly with various
nonorthogonal grids or coordinate transformations.

Some older codes (groundwater flow and other codes)
were built with hard-wired homogeneous Neumann
boundary conditions, df/dn = 0. Instead of code modifica-
tions, one can simply restrict the choice of manufactured
solution functions to fit the hard-wired values. Likewise, to
test periodic boundary conditions, one must choose a peri-
odic function for the manufactured solution.

See references [1, 3] for the following topics:

(a) early applications of MMS concepts

(b) applications to unsteady systems

(c) application to nonlinear systems of equations, in-
cluding full Navier-Stokes (with RANS turbulence mod-
eling) in general nonorthogonal coordinates

(d) using commercial symbolic manipulation pack-
ages to handle the algebraic complexity of the MMS
source terms

(e) discussions and examples of mixed first- and second-
order differencing

(f) the small parameter (high Reynolds number)
problem

(¢) subtleties concerning time-accurate directionally
split algorithms at boundaries

(h) possible issues with nonuniqueness

(i) economics of dimensionality

(j) applications of MMS to 3-D grid generation codes

(k) effects of strong and inappropriate coordinate
stretching

(I) debugging with manufactured solutions (when the
code verification initial result is negative)

(m) examples of many manufactured or otherwise
contrived analytical solutions in the literature
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(n) approximate but highly accurate solutions (often
obtained by perturbation methods) that can also be uti-
lized in code verification

(0) the possibility of a useful theorem related to MMS

(p) special considerations required for turbulence
modeling and other fields with multiple scales

(9) MMS code verification with a 3-D grid-tracked
moving free surface

(r) code robustness

(s) examples of the remarkable sensitivity of code
verification via systematic grid convergence testing

See reference [3] especially for details of blind testing
of MMS on debugging of a compressible flow code.

Besides its original use in code verification, MMS has
been used to evaluate methods for solution verification.
In this application, MMS is used to generate realistic
exact solutions for RANS turbulent flows to assess
calculation verification methods like the GCI and least
squares GCI, for estimation of iteration errors, and for
estimation of errors due to outflow boundary condi-
tions; see references [1, 2, 4-9]. Methods for detec-
tion of singularities in computational solid mechanics
have also been evaluated with this approach, termed
“Tuned Test Problems” in references [10, 11]. The MMS
may also be used in code development to ensure that
the solver is working correctly on any solution grid;
although not strictly a V&V issue, this is nevertheless
useful.

C-3 SOLUTION VERIFICATION WITH ADAPTIVE
GRIDS OR ZONAL MODELING

Solution adaptive grid generation is an effective
methodology for increasing accuracy. Adaptation may
be accomplished in either structured or unstructured
grids, and may be of the resource allocation type (usu-
ally for structured grids) in which a fixed number of
elements are relocated to improve accuracy as the so-
lution develops, or the enrichment type in which the
total number of elements changes as the solution de-
velops. In either approach, the adaptation is driven by
reducing some measure of error. For V&V purposes,
the significant point is that the adaptivity error mea-
sure is usually local and is not the same kind of error
estimate (metric) needed for solution verification. Also,
some Factor of Safety > 1 is still needed to convert any
error estimate into an uncertainty U_ . For solution
verification by grid coarsening or refinement, the adap-
tivity should be turned off. Code verification is also
complicated by adaptivity. (For further discussion, see
references [1, 5].)

Another powerful simulation approach involves
zonal modeling, in which different governing equa-
tions are applied in different physical zones. This also
requires special considerations for solution verifica-
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tion and code verification. (For some discussion, see
references [1, 5].)

C-4 LEAST SQUARES GCI

When observed convergence rates p over 4 or more grids
are far from constant or noisy, Eca and Hoekstra [12-19]
have developed a least squares procedure for determination
of effective p, which provides improved uncertainty esti-
mation for the difficult problems. For very difficult realis-
tic problems, more than the minimum four grids may be
necessary; they obtain [19] “fairly stable results using about
six grids with total refinement ratio near 2.” A least squares
procedure is recommended for noisy p problems, with the
additional step of limiting the maximum p used in the GCI
to theoretical p. On the other hand, there seems to be no
reason to categorically reject observed p < 1, which usually
indicates that the coarsest grid is somewhat outside the as-
ymptotic range, and the resulting uncertainty estimate of
the GCI will be overly conservative [20, 21]. This is not an
impediment to publication or reporting.

The least squares approach has been applied to several
models of convergence including the one-term expansion
with unknown order p considered here, as well as one-,
two-, or three-term expansions with fixed exponents. The
simplest method works as well, and is recommended, as
follows. The assumed one-term expansion of the discreti-
zation error is

fi—f.=ad} (C-4-1)

The least squares approach is based on minimizing the
function

Ng
S(f,ap = \121 [fi— (f.+ adD)]
where the number of grids Ng must be > 3, and the
notation f_ (not that of references [12-19]) suggests the
limit of fine resolution (in the absence of round-off error).
Setting the derivatives of S with respect to f,, «, p equal
to zero leads to

(C-4-2)

Ng Ng
fo=-"L1 {E fi-a Af} (C-4-3)
Ng Ui=1 i=1
Ng Ng Ng
Ng > fAl- (E f,) ( Af)
a= i=1 i=1 i=1 (C'4'4)
Ng Ng Ng
Ng > AP- (E Af)( A,f’)
i=1 i=1 i=1
Ng Ng Ng
> fAog(A) — f. >, Allog(A) — o>, A¥ log(A)
i=1 i=1 i=1
=0 (C-4-5)

The last equation is nonlinear and is solved iteratively
by a false position method for observed p. As noted, it is
recommended that max p be limited to theoretical p for
use in the GCI, and if p is erratic, a higher Factor of Safety
Fs = 3 may be used.
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C-5 FAR-FIELD BOUNDARY ERRORS

In Section 2, some discussion has been given of
the error due to outflow boundary position and other far-
field boundary errors, but the location of such an error
estimate in the validation process has not been specified.
In common practice, it is often ignored. It is not like the
terms in U _ _ because it is not an ordered error (not or-
dered in A). (See further discussion in reference [1].) De-
pending on the conditions applied at these boundaries,
the error could be (and often is) systematic, and there-
fore difficult to justify including in an uncertainty. It can
unambiguously be included as part of the strong-sense
modeling error (see below). In this Standard, it has been
assumed that this error is smaller than the other errors
considered.

C-6 SPECIFIC AND GENERAL SENSES OF MODEL

“Model” in a general sense (often termed a “weak
model”) is the model form, the general mathematical for-
mulation (e.g., the incompressible Navier-Stokes equa-
tions, or the Fourier law of heat conduction). “Model” in
a specific sense (often termed a “strong model”) includes
all the parameter values, boundary values, and initial
conditions needed to define a particular problem (e.g.,
Reynolds number, airfoil shape and angle of attack, or the
conductivity and specific heat).

The specific parameters and boundary values are
needed to run a simulation, so in a sense, only specif-
ics can be validated. The same is true for experimental
confirmation of physics theories (i.e., there are only spe-
cific samples of physical cases). However, after validat-
ing many specific cases, there is a tendency to generalize.
It is understood what turbulence modelers mean when
they say that the k-& model has been validated for attached
boundary layers in favorable pressure gradients, but vali-
dation fails in adverse pressure gradients. The details will
vary with particular cases (airfoils, Re, M, etc.) but there is
a sense that the general k-& model is validated in a range
of parameter space, i.e. the validation domain. Thus, one
performs specific model validation that ultimately results
in an ensemble general model validation or community-
level acceptance of the general model.

A further ambiguity in terminology occurs in problem
areas in which a particular mesh will have long-term
use. This occurs notably in geophysical modeling, in-
cluding site modeling for free surface flows, groundwa-
ter flow and transport modeling, ocean modeling, and
weather and climate modeling, but it is not restricted to
these. Here, the word “model” can include the particular
mesh, and even particular discretization algorithms. This
leads to contradictions, since a grid convergence verifi-
cation test then involves changing the “model.” In V&V
10 [22] it was made clear that the definition adopted
therein for model does not include the mesh, a position
also taken in the present standard. However, V&V 10
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[22] considers matrix solvers to be part of the model, a
position that, if legalistically interpreted, would require
re-validation for every change in code options that
select the solver. In some disciplines, the word “model”
is often used synonymously with “code.” As used in the
present document, one would not speak of “verifying a
model” because the model is to be validated (physics),
whereas the numerical algorithms and coding and grids
are to be verified (mathematics). It would be impossible
to revise, and wrong to ignore, these existing practices so
the context will have to guide the reader.

C-7 PARAMETRIC AND MODEL FORM
UNCERTAINTIES

A thorough validation study must consider paramet-
ric uncertainty, the u, term in eq. (1-5-10), using the
methods described in Section 3. The estimation of u,
is meaningful only after a set-point (nominal-valued)
simulation has been completed. But note that some (even
all) of the parameters in the model formulation may be
considered hard-wired values inherent to the model, and
therefore not contributors to u, . If all parameter values
are considered fixed in the model, this is the limit of what
has been termed a “strong-model” approach. See refer-
ence [1] for further discussion, history, and implications
to the philosophy of scientific validation.

In addition to parametric uncertainty, model form un-
certainty (and more fundamentally, model form error)
arises when incomplete physics are incorporated into the
model. The distinction between parametric uncertainty
and model form uncertainty can be gray. For example,
in the fin tube heat exchanger problem of Section 7,
the contact conductance term h_was first considered to
be hard-wired (complete contact, or contact resistance
=1/ h_=0). In the second model used, /. was considered
to be a problem parameter. A code with option to treat
h, might be run with 1/ h_= 0 (i.e., a fixed parameter),
because of lack of knowledge of 1. With the same model
and code, the same lack of knowledge of the parameter /1_
could be categorized as either model form uncertainty or
input parameter uncertainty. Either choice is acceptable,
but the documentation must be clear.

Both parametric uncertainty and model form uncer-
tainty are generally present, and both contribute to the
validation uncertainty. With or without estimation of
Uy, N€ither uncertainty is ignored; their effects simply
result in an overall validation uncertainty. When para-
metric uncertainty is completely analyzed, the validation
uncertainty resulting from the comparison of experimen-
tal results with simulation results is the model form un-
certainty.

It is worthwhile to distinguish between parametric
uncertainty in a validation exercise vs. parametric uncer-
tainty in a predictive analysis (e.g., [23]). When parametric
uncertainty is quantified in a validation exercise, the re-
maining model form uncertainty is not ignored; rather,
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it is manifest in the validation uncertainty. That is, the
model form uncertainty is evaluated by the validation un-
certainty in eq. (1-5-10). However, in a predictive anal-
ysis (in which the physical answer is not known), full
coverage of parametric uncertainty cannot be assumed
to cover all possible results because model form uncer-
tainty is not represented. In the above example of the
fin tube heat exchanger, if validation is directed towards
temperature distributions throughout the heat exchanger,
then unlimited variation of the other parameters will not
reach agreement for a physical problem dominated by
contact resistance. Thus, even a full study of parametric
uncertainty in a predictive analysis does not account for
all sources of modeling error.

C-8 VALIDATION EXPERIMENTS

Validation experiments are designed specifically for
validation [1, 24, 25]. Requirements for validation are dis-
tinct, and validation experiments are easier in some re-
spects but more difficult in others. In aerodynamics, for
example, the emphasis in pre-computational days was
on wind-tunnel experiments, which attempted to repli-
cate free-flight conditions. Great effort was expended on
achieving near-uniform inflow and model fidelity, and on
minimizing wall and blockage effects. The latter required
small-scale physical models, which sacrificed parameter
fidelity (Reynolds number) and aggravated geometric fi-
delity problems.

The validation experiment concept approaches the
problem differently, sacrificing some fidelity between
the wind-tunnel flow and free flight, but requiring that
more nearly complete details of the experimental con-
ditions and field data be obtained. No longer is it so
important to achieve uniform inflow, but it is critical to
report in detail what those spatially varying inflow condi-
tions are, so that they may be input to the computational
simulation. (It is a regrettable fact that many experi-
ments, even those supposedly designed as validation
experiments, are uncontrolled and unmeasured.) The
principle is that if the model validation is good (by what-
ever criteria are appropriate) for a flow perturbed from
the free-flight conditions, it will probably be good for the
free-flight condition. Thus blockage effects are not such
major issues (and the tunnel wall itself may be modeled),
and models can be larger (or tunnels smaller and therefore
cheaper), thereby improving fidelity of Reynolds number
and model geometry. Analogous situations occur in other
experimental fields. Characteristics of good validation ex-
periments are discussed in references [1, 24, 25].

C-9 LEVEL OF VALIDATION VS. PASS/FAIL
VALIDATION

Variance exists in the use of the word validation in
regard to whether or not an acceptable tolerance for
the agreement between experiment and simulation is
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specified (i.e., a pass/fail evaluation). Full validation
of a model can be considered in two steps: first, com-
parison of model predictions with experimental val-
ues, leading to an assessment of model accuracy, and
second, determination of pass/fail of that accuracy for
a particular application. In some usage, a model whose
results have been compared to experiments is labeled
validated regardless of the agreement achieved. In the
loosest use of the term, validated then is not a quality
of the code/model per se, but just refers to the process.
Carried to an extreme, this viewpoint gives the desig-
nation validated even to very poor models. We do not
recommend this usage. A more moderate usage is to
deem the model validated, regardless of the agreement
achieved, but to state explicitly that the model is vali-
dated to within E + u_, determined from following the
procedures in this Standard. This way, the validation
statement provides a quantitative assessment, but stops
short of a rigid pass/fail statement, since that requires
consideration of the design, cost, risk, etc. The other
extreme makes validation project-specific by specify-
ing the error tolerance a priori, (e.g., see references
[22, 25]). This ties a model/code validation rigidly to a
particular engineering project rather than to less spe-
cific science-based engineering (or it neglects the fact
that agreement may be acceptable for one application
and not for another). Not all comparisons should result
in a code being given the value-laden designation of
validated because some minimal agreement should be
required. The general (and necessarily vague) level of
acceptable agreement must be determined by common
practice in the discipline.* The simulation results with
their uncertainties are compared to experiments with
their uncertainties, and if reasonable agreement as de-
termined by the state-of-the-art standards is achieved,
then the code/model can be termed “validated.” This
does not necessarily mean that the model will be ad-
equate for all applications. Such project-specific pass/
fail tolerance should be relegated to certification [1]
or accreditation. The value of this pass/fail tolerance
tends to vary over time with design decisions, product
requirements, and economics, even though the objec-
tive results of the validation comparison itself have
more permanent value.

In the present document, descriptions are generally
preferred to rigid definitions. In the first paragraph of the
Foreword and of the Introduction (Section 1), validation
is described as “validation, the process of determining the
degree to which a model is an accurate representation of
the real world from the perspective of the intended uses
of the model.” This description uses the same wording
as the widely cited formal definition (e.g., the AIAA
Guide [26] and ASME V&V 10 [22]), which is based upon

*Certainly incorrect trend prediction can be enough to
categorically reject a model, i.e. to fail validation.
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a previous DoD definition [27] that had another phrase
“and its associated data” after the word “model.”

Despite the apparent clarity of this concise one-
sentence definition using common terms, it is, in fact,
ambiguous. There are at least three contested issues:
whether “degree” implies acceptability criteria (pass/
fail) as already discussed; whether “real world” im-
plies experimental data; and whether “intended use”
is specific or general (even by those who think it is
needed at all). This gives 2° = 8 possible interpretations
of the same definition, without even getting into argu-
ments about what is meant by “model” — i.e., com-
putational, conceptual, mathematical, strong, weak.
Formal definitions are required for contract or regu-
lation specifications, but they are not sufficient. Bare
definitions should be expanded to describe the inter-
pretation. The definition—deduction approach alone is
not adequate. The recommendations of this document
are that

(a) validation does not include acceptability criteria,
which are relegated to certification or accreditation or
perhaps another term related to a specific project.

(b) experimental data are required (“no experimental
data = no validation”).

(c) the intended use is very general (with specific
intended use being tied to acceptability criteria embed-
ded in project-specific certification rather than valida-
tion). In any case, it is noteworthy that none of these
choices affect any of the procedures presented in this
document.

C-10 NUMERICAL CALIBRATIONS

Calibration occurs not only in physical experimentation
but also in simulations, more in some problem areas than
in others. If parameter values are determined by inde-
pendent experimental measurements, this is not usually
considered to be calibration. In calibration, one typically
adjusts simulation parameters in order to minimize the
least square error between experimental measurements
and model outcome. Notably, this is the procedure by
which some of the “universal” parameters of various
RANS turbulence models have been determined (e.g. see
reference [28]). The experiments used can be the same
type as validation experiments or may be specially de-
signed for calibration (e.g. see reference [29]). Calibration
of input parameters is sometimes a source of contro-
versy, notably when many parameters are calibrated (or
“tuned”) simultaneously with few constraints. Whatever
the criticisms of a particular calibration exercise, calibra-
tion experiments and validation experiments must be
kept separate; otherwise validation is just a self-fulfilling
prophecy. This point has been rightly emphasized for
Computational Solid Mechanics in reference [22] and
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for CFD free-surface flows in reference [29]. “Thus,
calibration is not validation” [22, p. 20].
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